

SNS COLLEGE OF ENGINEERING

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

1

DEPARTMENT OF CSE (IoT)

23ECT102- ELECTRONIC DEVICES AND CIRCUITS I YEAR/ II SEMESTER

UNIT 1 - TRANSISTPR BIASING AND STABILIZATION

TOPIC –Introduction to Transistors

What is a Transistor?

- Semiconductors: ability to change from conductor to insulator
- Can either allow current or prohibit current to flow
- Useful as a switch, but also as an amplifier
- Essential part of many technological advances

A Brief History

- Guglielmo Marconi invents radio in 1895
- Problem: For long distance travel, signal must be amplified
- Lee De Forest improves on Fleming's original vacuum tube to amplify signals
- Made use of third electrode
- Too bulky for most applications

- Bell Labs (1947): Bardeen, Brattain, and Shockley
- Originally made of germanium
- Current transistors made of doped silicon

- Doping: adding small amounts of other elements to create additional protons or electrons
- P-Type: dopants lack a fourth valence electron (Boron, Aluminum)
- N-Type: dopants have an additional (5th) valence electron (Phosphorus, Arsenic)
- Importance: Current only flows from P to N

- Diode: simple P-N junction.
- Forward Bias: allows current to flow from P to N.
- Reverse Bias: no current allowed to flow from N to P.
- Breakdown Voltage: sufficient N to P voltage of a Zener Diode will allow for current to flow in this direction.

7

- <u>3 adjacent regions</u> of doped Si (each connected to a lead):
 - Base. (thin layer, less doped).
 - Collector.
 - Emitter.
- <u>2 types</u> of BJT:
 - npn.
 - pnp.

Developed by

<u>Most common</u>: npn (focus on it).

npn bipolar junction transistor

pnp bipolar junction transistor

Shockley (1949) 3/11/2025 Introduction to Transistors/23ECT102- ELECTRONIC DEVICES AND CIRCUITS/D.KAVITHA /AP/CSE(IoT)/SNSCE 8

BJT NPN Transistor

- <u>1 thin layer of p-type</u>, sandwiched between <u>2 layers of n-type</u>.
- N-type of emitter: <u>more heavily doped</u> than collector.
- <u>With $V_{\underline{C}} > V_{\underline{B}} > V_{\underline{E}}$ </u>:
 - <u>Base-Emitter</u> junction <u>forward biased</u>, <u>Base-Collector</u> <u>reverse biased</u>.
 - Electrons diffuse from Emitter to Base (from n to p).
 - There's a <u>depletion layer</u> on the Base-Collector junction \rightarrow no flow of e-allowed.
 - **BUT** the <u>Base is thin and Emitter region is n⁺ (heavily doped)</u> \rightarrow electrons have enough momentum to cross the Base into the Collector.
 - The small base current I_B controls a large current I_C

$$V_{C} > V_{B} > V_{E}$$

$$I_{E} = I_{C} + I_{B}$$

$$V_{BE} = V_{B} - V_{E}$$

$$V_{CE} = V_{C} - V_{E}$$

$$I_{C} = \beta I_{B}$$

BJT characteristics

- $\underline{\alpha} \text{ is the fraction of } \underline{\text{electrons}} \\ \text{that } \underline{\text{diffuse across}} \\ \text{Base region} \\ \text{the narrow} \\ \text{Base region} \\ \text{the narrow} \\ \text{the nar$
- $\frac{1-\alpha}{\text{recombine with holes}}$ in the Base region to create base current
- The current Gain is expressed in terms of the <u>β (beta)</u> of the transistor (often called h_{fe} by manufacturers).
- <u>β (beta)</u> is Temperature and Voltage dependent.
- It can vary a lot among transistors (common values for signal BJT: 20 - 200).

- Emitter is grounded.
- Base-Emitter starts to conduct with $V_{BE}=0.6V$, I_C flows and it's $I_C=\beta*I_B$.
- Increasing I_B , V_{BE} slowly increases to 0.7V but I_C rises exponentially.
- As I_C rises ,voltage drop across R_C increases and V_{CE} drops toward ground. (transistor in saturation, no more linear relation between I_C and $I_B)$

Figure 8.9(b) The collector-emitter output characteristics of a BJT

3/11/2025

Introduction to Transistors/23ECT102-ELECTRONIC DEVICES AND CIRCUITS/D.KAVITHA /AP/CSE(IoT)/SNSCE 12

Operation	I _B or V _{CE}	BC and BE	Mode
Region	Char.	Junctions	
Cutoff	I_B = Very small	Reverse & Reverse	Open Switch
Saturation	V _{CE} = Small	Forward & Forward	Closed Switch
Active	V _{CE} =	Reverse &	Linear
Linear	Moderate	Forward	Amplifier
Break-	V _{CE} =	Beyond	
down	Large	Limits	

BJT as Switch

Saturation region

 $\bullet V_{out} = small$

= LOW

• $\underline{V}_{in}(High)$

3/11/2025

•<u>V</u>_{in}(Low) < 0.7 V •BE junction not forward biased Cutoff region No current flows $\bullet V_{out} = V_{CE} = V_{cc}$ • $V_{out} = High$ Saturation Collector characteristic V_{CC} $i_B \approx 50 \,\mu\text{A}$ Rc •BE junction forward biased (V_{BE}=0.7V) $i_B = 40 \,\mu A$ Rc •V_{CF} small (~0.2 V for saturated BJT) $i_R = 20 \ \mu A$ Cutofi • $I_B = (V_{in} - V_B)/R_B$ Introduction to Transistors/23ECT102- ELECTRONIC DEVICES AND CIRCUIT

BJT as Switch 2

- Basis of digital logic circuits
- Input to transistor gate can be analog or digital
- Building blocks for <u>TTL</u> Transistor Transistor Logic
- <u>Guidelines</u> for designing a transistor switch:
 - V_C>V_B>V_E
 - V_{BE}= 0.7 V
 - I_C independent from I_B (in saturation).
 - Min. I_B estimated from by (I_{Bmin} \approx I_C/ β).
 - Input resistance \rightarrow such that I_B > 5-10 times I_{Bmin} because β varies among components, with temperature and voltage and R_B may change when current flows.
 - Calculate the max $\rm I_{C}$ and $\rm I_{B}$ not to overcome device specifications.

BJT as Amplifier

Common emitter mode
Linear Active Region
Significant current Gain
Example:
Let Gain, β = 100

•Assume to be in active region -> V_{BE} =0.7V

•Find if it's in active region

BJT as Amplifier

 V_{CB} >0 so the BJT is in active region

Thank you!