
UNIT II

SEMAPHORES – MUTEX,
CLASSICAL PROBLEMS OF

SYNCHRONIZATION

Semaphore

• Synchronization tool that does not require busy waiting

• Semaphore S – integer variable

• Two standard operations modify S: wait() and signal() , Originally called P() and V()

• Less complicated

• Can only be accessed via two indivisible (atomic) operations

• wait (S) {

while S <= 0

; // no-op

S--;

}

• signal (S) {

S++;

}

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Semaphore as General
 Synchronization Tool

• Counting semaphore – integer value can range over an unrestricted domain

• Binary semaphore – integer value can range only between 0
and 1; can be simpler to implement

• Also known as mutex locks

• Can implement a counting semaphore S as a binary semaphore

• Provides mutual exclusion

Semaphore mutex; // initialized to 1

do {

 wait (mutex);

 // Critical Section

 signal (mutex);

 // remainder section

} while (TRUE);

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Semaphore Implementation

• Must guarantee that no two processes can execute wait() and signal() on the same

semaphore at the same time

• Thus, implementation becomes the critical section problem where the wait and

signal code are placed in the crtical section.

• Could now have busy waiting in critical section implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical sections and therefore this is

not a good solution.

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Semaphore Implementation
 with no Busy waiting

• With each semaphore there is an associated waiting queue. Each entry in a

waiting queue has two data items:

• value (of type integer)

• pointer to next record in the list

• Two operations:

• block – place the process invoking the operation on the appropriate

waiting queue.

• wakeup – remove one of processes in the waiting queue and place it in the

ready queue.

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Semaphore Implementation
with no Busy waiting (Cont.)

• Implementation of wait:

 wait(semaphore *S) {

 S->value--;

 if (S->value < 0) {

 add this process to S->list;

 block();

 }

 }

• Implementation of signal:

 signal(semaphore *S) {

 S->value++;

 if (S->value <= 0) {

 remove a process P from S->list;

 wakeup(P);

 }

 } Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Deadlock and Starvation

• Deadlock – two or more processes are waiting indefinitely for an event that can be
caused by only one of the waiting processes

• Let S and Q be two semaphores initialized to 1

 P0 P1

 wait (S); wait (Q);

 wait (Q); wait (S);

 . .

 . .

 . .

 signal (S); signal (Q);

 signal (Q); signal (S);

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Deadlock and Starvation

• Starvation – indefinite blocking. A process may never be removed from the semaphore

queue in which it is suspended

• Priority Inversion - Scheduling problem when lower-priority process holds a lock

needed by higher-priority process

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Classical Problems of Synchronization

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Bounded-Buffer Problem

• N buffers, each can hold one item

• Semaphore mutex initialized to the value 1

• Semaphore full initialized to the value 0

• Semaphore empty initialized to the value N.

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Bounded Buffer Problem (Cont.)
• The structure of the producer process

 do {

 // produce an item in nextp

 wait (empty);

 wait (mutex);

 // add the item to the buffer

 signal (mutex);

 signal (full);

 } while (TRUE);

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Bounded Buffer Problem (Cont.)

• The structure of the consumer process

 do {

 wait (full);

 wait (mutex);

 // remove an item from buffer to nextc

 signal (mutex);

 signal (empty);

 // consume the item in nextc

 } while (TRUE);

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Readers-Writers Problem

• A data set is shared among a number of concurrent processes

• Readers – only read the data set; they do not perform any updates

• Writers – can both read and write

• Problem – allow multiple readers to read at the same time. Only one single

writer can access the shared data at the same time

• Shared Data

• Data set

• Semaphore mutex initialized to 1

• Semaphore wrt initialized to 1

• Integer readcount initialized to 0
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Readers-Writers Problem (Cont.)

• The structure of a writer process

 do {

 wait (wrt) ;

 // writing is performed

 signal (wrt) ;

 } while (TRUE);

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Readers-Writers Problem (Cont.)

• The structure of a reader process

 do {

 wait (mutex) ;

 readcount ++ ;

 if (readcount == 1)

 wait (wrt) ;

 signal (mutex)

 // reading is performed

 wait (mutex) ;

 readcount - - ;

 if (readcount == 0)

 signal (wrt) ;

 signal (mutex) ;

 } while (TRUE);

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Dining-Philosophers Problem

• Shared data

• Bowl of rice (data set)

• Semaphore chopstick [5] initialized to 1

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Dining-Philosophers Problem
(Cont.)

• The structure of Philosopher i:

do {

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 // think

} while (TRUE);

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Problems with Semaphores

• Incorrect use of semaphore operations:

• signal (mutex) …. wait (mutex)

• wait (mutex) … wait (mutex)

• Omitting of wait (mutex) or signal (mutex) (or both)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

	Slide 1: Unit II Semaphores – Mutex, Classical problems of synchronization
	Slide 2: Semaphore
	Slide 3: Semaphore as General Synchronization Tool
	Slide 4: Semaphore Implementation
	Slide 5: Semaphore Implementation with no Busy waiting
	Slide 6: Semaphore Implementation with no Busy waiting (Cont.)
	Slide 7: Deadlock and Starvation
	Slide 8: Deadlock and Starvation
	Slide 9: Classical Problems of Synchronization
	Slide 10: Bounded-Buffer Problem
	Slide 11: Bounded Buffer Problem (Cont.)
	Slide 12: Bounded Buffer Problem (Cont.)
	Slide 13: Readers-Writers Problem
	Slide 14: Readers-Writers Problem (Cont.)
	Slide 15: Readers-Writers Problem (Cont.)
	Slide 16: Dining-Philosophers Problem
	Slide 17: Dining-Philosophers Problem (Cont.)
	Slide 18: Problems with Semaphores

