
COURSE NAME : 23CSB201 & Object Oriented Programming

II YEAR/ III SEMESTER

UNIT – II INHERITANCE, PACKAGES, INTERFACE

Topic: Inheritance – BasicS, Types

Dr.P.Poonkodi

Assistant Professor(SG)

Department of Computer Science and Technology

SNS COLLEGE OF ENGINEERING
Coimbatore-107

An Autonomous Institution

Introduction
• Inheritance is a process where one class acquires the properties

(methods and attributes) of another class

• It allows a class (child or subclass) to inherit the properties and
behaviors of another class (parent or superclass)

• This promotes code reusability, hierarchy, and better organization in
a program

• Java supports several types of inheritance, each serving a different
purpose

• However, multiple inheritance using classes is not supported in Java
to avoid the diamond problem, but it can be achieved using
interfaces

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 212-03-2025

Key Features
1.Code Reusability: Avoids duplication by reusing existing class

properties.

2.Hierarchy: Establishes a relationship between base and

derived classes.

3.Extensibility: Allows modification of behavior without changing

the base class.

4.Improved Maintainability: Enhances program structure and

reduces redundancy.

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 312-03-2025

Key Features
1.Code Reusability: Avoids duplication by reusing existing class

properties.

2.Hierarchy: Establishes a relationship between base and

derived classes.

3.Extensibility: Allows modification of behavior without changing

the base class.

4.Improved Maintainability: Enhances program structure and

reduces redundancy.

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 412-03-2025

Types of Inheritance
1.Single Inheritance
2.Multilevel Inheritance
3.Hierarchical Inheritance
4.Multiple Inheritance (via
Interfaces)
5.Hybrid Inheritance (via
Interfaces)

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 512-03-2025

Single Inheritance
•Definition:

only one base class and one derived class

Example:

A Student class inherits from a Person class

•Use Case:

Simple hierarchical relationships

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 612-03-2025

Example
class Person

{

String name;

void showName()

{

System.out.println("Name: " + name);

}

}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 712-03-2025

Cond.,
class Student extends Person

{

int studentId;

void showStudentId()

{

System.out.println("Student ID: " + studentId);

}

}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 812-03-2025

Cond.,
public class SingleInheritanceExample

{

public static void main(String[] args)

{

Student student = new Student();

student.name = "Alice";

student.studentId = 101;

student.showName();

student.showStudentId();

}

}
Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 912-03-2025

Multilevel Inheritance
• Definition:

 A base class is inherited to a derived class and that derived class is further
inherited to another derived class

 Multilevel inheritance involves multiple base classes

• Example: Person → Student → GraduateStudent
• Use Case: Extending functionality over multiple levels.

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1012-03-2025

Example
class Person

{

String name;

void showName()

{

System.out.println("Name: " + name);

}

}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1112-03-2025

Cond.,
class Student extends Person

{

int studentId;

void showStudentId()

{

System.out.println("Student ID: " + studentId);

}

}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1212-03-2025

Cond.,

class GraduateStudent extends Student

{

String specialization;

void showSpecialization()

{

System.out.println("Specialization: " + specialization);

}

}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1312-03-2025

Cond.,
public class MultilevelInheritanceExample

{

public static void main(String[] args)

{

GraduateStudent gradStudent = new GraduateStudent();

gradStudent.name = "Bob";

gradStudent.studentId = 102;

gradStudent.specialization = “CST";

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1412-03-2025

Cond.,
gradStudent.showName();

gradStudent.showStudentId();

gradStudent.showSpecialization();

}

}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1512-03-2025

Hierarchical Inheritance
Definition:

only one base class and multiple derived classes
Example:

Person is a parent class of Student and Teacher
Use Case:

When multiple entities share common attributes

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1612-03-2025

Example
class Person
{

String name;

void showName()
{

System.out.println("Name: " + name);
}

}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1712-03-2025

Cond.,
class Student extends Person {

int studentId;

void showStudentId() {
System.out.println("Student ID: " + studentId);

}
}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1812-03-2025

Cond.,
class Teacher extends Person
{

String subject;

void showSubject()
{

System.out.println("Teaches: " + subject);
}

}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1912-03-2025

Cond.,
public class HierarchicalInheritanceExample
{

public static void main(String[] args)
{

Student student = new Student();
student.name = "Charlie";
student.studentId = 103;
student.showName();
student.showStudentId();

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 2012-03-2025

Cond.,
Teacher teacher = new Teacher();
teacher.name = "Dr. Smith";
teacher.subject = "Mathematics";
teacher.showName();
teacher.showSubject();

}
}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 2112-03-2025

Multiple Inheritance
Definition:

Java does not support multiple inheritance with classes, but it
allows multiple inheritance using interfaces.
Example:

A Student class can implement both Sports and Academics
interfaces.
Use Case:

When a class needs to inherit behaviors from multiple sources

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 2212-03-2025

Example
interface Sports
{

void playSport();
}

interface Academics
{

void study();
}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 2312-03-2025

Class with interface
class Student implements Sports, Academics
{

public void playSport()
{

System.out.println("Student plays football.");
}
public void study()

{
System.out.println("Student studies computer science.");

}
}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 2412-03-2025

Main class

public class MultipleInheritanceExample
{

public static void main(String[] args)
{

Student student = new Student();
student.playSport();
student.study();

}
}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 2512-03-2025

Hybrid Inheritance
Definition:

Combination of two or more types of inheritance, implemented
using interfaces
Example:

A StudentAthlete class inherits academic features from
Academics and sports skills from Sports
Use Case:

When a system requires a mix of different inheritance types

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 2612-03-2025

Example
interface Sports
{

void playSport();
}

interface Academics
{

void study();
}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 2712-03-2025

Example
class Person
{

String name;

void showName()
{

System.out.println("Name: " + name);
}

}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 2812-03-2025

Example
// Hybrid Inheritance: Person + Academics + Sports
class StudentAthlete extends Person implements Academics, Sports
{

public void playSport()
{

System.out.println("StudentAthlete plays basketball.");
}
public void study()

{
System.out.println("StudentAthlete studies data science.");

}
}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 2912-03-2025

Example
public class HybridInheritanceExample
{

public static void main(String[] args)
{

StudentAthlete studentAthlete = new StudentAthlete();
studentAthlete.name = "David";
studentAthlete.showName();
studentAthlete.study();
studentAthlete.playSport();

}
}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 3012-03-2025

References

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 3112-03-2025

• Java : the complete Reference (Eleventh Edition), Herbert
Schildt, 2018.

12-03-2025 32/22Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE

