
DEADLOCK 

  

Definition: A process requests resources. If the resources are not available at that time ,the process 

enters a wait state. Waiting processes may never change state again because the resources they have 

requested are held by other waiting processes. This situation is called a deadlock. 

  

  

A   process must request  a resource before using it,  and must release resource after using it. 

  

1.    Request: If the request cannot be granted immediately then the requesting process must 

wait until it can acquire the resource. 

  

2.   Use: The process can operate on the resource 

  

3.   Release: The process releases the resource. 

  

  

  

1. Deadlock Characterization 

  

Four Necessary conditions for a deadlock 

  

1. Mutual exclusion: At least one resource must be held in a non sharable mode. That is only 

one process at a time can use the resource. If another process requests that resource, the requesting 

process must be delayed until the resource has been released. 

  

2. Hold and wait: A process must be holding at least one resource and waiting to 

acquire additional resources that are currently being held by other processes. 

  

3. No preemption: Resources cannot be preempted. 

  

4. Circular wait: P0 is waiting for a resource that is held by P1, P1 is waiting for a resource 

that is held by P2...Pn-1. 

  

2. Resource-Allocation Graph 

  

It is a Directed Graph  with a set of vertices V and set of edges E. 

  

V is partitioned into two types: 

  

ü   nodes P = {p1, p2,..pn} 

  

ü   Resource type R ={R1,R2,...Rm} 

  

Pi  -->Rj - request => request edge 

  

Rj-->Pi - allocated => assignment edge. Pi  is denoted  as  a  circle  and   Rj  as  a square. 



 

Rj may have more than one instance represented as a dot with in the square. 

  

Sets P,R and E. P = {P1,P2,P3} R = {R1,R2,R3,R4} 

  

E= {P1->R1, P2->R3, R1->P2, R2->P1, R3->P3 } 

 
  

Resource instances 

  

One instance of resource type R1,Two instance of resource type R2,One instance of resource type 

R3,Three instances of resource type R4. 

Process states 

  

Process P1 is holding an instance of resource type R2, and is waiting for an instance of resource type 

R1.Resource Allocation Graph with a deadlock 

  

Process P2 is holding an instance of R1 and R2 and is waiting for an instance of resource type 

R3.Process P3 is holding an instance of R3. 

  

P1->R1->P2->R3->P3->R2->P1 

  

P2->R3->P3->R2->P2 

  

Methods for handling Deadlocks 

  

ü        Deadlock Prevention 

  

ü        Deadlock Avoidance 

  

ü        Deadlock Detection and Recovery 

  

3. Deadlock  Prevention: 

  

v This   ensures that the system never enters the deadlock state. 

  



v Deadlock prevention is a set of methods for ensuring that at least one of the necessary conditions 

cannot hold. 

  

v By ensuring that at least one of these conditions cannot hold, we can prevent the occurrence of a 

deadlock. 

  

Denying Mutual exclusion 

  

§  Mutual exclusion condition must hold for non-sharable resources. 

  

§  Printer cannot be shared simultaneously shared by prevent processes. 

  

§  sharable resource - example Read-only files. 

   If several processes attempt to open a read-only file at the same time, they can be granted 

simultaneous access to the file. 

  

   A process never needs to wait for a sharable resource. 

  

  

  

Denying Hold and wait 

  

o  Whenever a process requests a resource, it does not hold any other resource. 

  

o One technique that can be used requires each process to request and be allocated 

  

  

o  all its resources before it begins execution. 

  

o   Another technique is before it can request any additional resources, it must release all the 

resources that it is currently allocated. 

  

Ø These techniques have two main disadvantages : 

  

§ First, resource utilization may be low, since many of the resources may be allocated but 

unused for a long time. 

  

§  We must request all  resources at  the beginning for both  protocols. 

  

§  starvation is possible. 

  

Denying No preemption 

  

       If  a  Process is holding  some  resources  and requests another       resource  that cannot be 

immediately allocated to it. (that is the process must         wait), then all resources currently being held 

are preempted. (ALLOW PREEMPTION) 

       These resources are implicitly released. 



       The process will be restarted only when it can regain its old resources. 

  

Denying Circular wait 

  

Ø Impose a total ordering of all resource types and allow each process to request for resources in 

an increasing order of enumeration. 

  

o   Let  R = {R1,R2,...Rm} be the set of resource types. 

  

Ø Assign to each resource type a unique integer number. 

  

Ø If the set of resource types R includes tapedrives, disk drives and printers. 

  

F(tapedrive)=1, 

  

F(diskdrive)=5, 

F(Printer)=12. 

Ø Each  process  can  request  resources   only  in  an   increasing  order  of 

  

renumeration. 

  

  

  

4. Deadlock Avoidance: 

  

ü Deadlock avoidance   request   that   the OS be given in advance additional information 

concerning  which  resources a  process  will request    and   useduring  its life time. 

  

With this information it can be decided for each request whether or not the process should wait. 

  

ü To decide whether the current request can be satisfied or must be delayed, a system must consider 

the resources currently available, the resources currently allocated to each process and future 

requests and releases of each process. 

  

Safe State 

  

v A state is safe if the system can allocate resources to each process in some order and still 

avoid a dead lock. 

  

v A deadlock is an unsafe state. 

  

v Not all unsafe states are dead locks 

  

v An unsafe state may lead to a dead lock 

  

  

Two algorithms are used for deadlock avoidance namely; 

  



1. Resource Allocation Graph Algorithm - single instance of a resource type. 

  

2. Banker’s Algorithm – several instances of a resource type. 

  

Resource allocation graph algorithm 

  

Claim edge - Claim edge Pi---> Rj indicates that process Pi may request resource Rj at some time, 

represented by a dashed directed edge. 

·        When process Pi request resource Rj, the claim edge Pi -> Rj is converted to a request edge. 

  

·        Similarly, when a resource Rj is released by Pi the assignment edge Rj -> Pi is reconverted to 

a claim edge Pi -> Rj 

  

Banker's algorithm 

  

Available: indicates the number of available resources of each type. 

  

Max: Max[i, j]=k  then process Pi  may request  at  most k  instances of resource type Rj 

  

Allocation : Allocation[i. j]=k, then process Pi is currently allocated K instances of resource type Rj 

  

Need : if Need[i, j]=k then process Pi may need K more instances of resource type Rj Need [i, 

j]=Max[i, j]-Allocation[i, j] 

  

Safety algorithm 

  

1   Initialize work := available and Finish [i]:=false for i=1,2,3 .. n 

  

2   Find an i such that both 

  

1   Finish[i]=false b. Needi<= Work 

if no such i exists, goto step 4 

  

3. work :=work+ allocation i; Finish[i]:=true 

  

goto step 2 

  

4. If finish[i]=true for all i, then the system is in a safe state 

  

Resource Request Algorithm 

  

Let Requesti be the request from process Pi for resources. 

  

1.  If Requesti<= Needi goto step2, otherwise raise an error condition, since the process has 

exceeded its maximum claim. 

  

2.  If Requesti <= Available, goto step3, otherwise Pi must wait, since the resources are not 

available. 



  

3. Available := Availabe-Requesti; 

  

Allocationi := Allocationi + Requesti 

  

Needi := Needi - Requesti; 

  

Now apply the safety algorithm to check whether this new state is safe or not. 

If it is safe then the request from process Pi can be granted. 

  

5. Deadlock Detection 

  

(i)          Single instance of each resource type 

  

  

ResourceAllocation Graph 

 

 
ii)  Several  Instance of a resource type      

Available    : Number    of      available     resources  of each type 

Allocation   : number     of      resources    of  each  type currently allocated toeach process 

Request : Current request of each process 

If Request [i,j]=k, then process Pi is requesting K more instances of resource type Rj. 

1. Initialize work := available 



  

Finish[i]=false, otherwise finish [i]:=true 

  

2. Find an index i such that both 

  

a. Finish[i]=false 

  

b. Requesti<=work 

  

if no such i exists go to step4. 

  

3. Work:=work+allocationi 

  

Finish[i]:=true goto step2 

  

4. If finish[i]=false 

  

then process Pi is deadlocked 

  

6. Deadlock Recovery 

  

1. Process Termination  

1. Abort all deadlocked processes.  

2. Abort  one  deadlocked  process  at  a  time  until  the  deadlock cycle is eliminated. 

After  each  process  is  aborted  ,  a  deadlock  detection  algorithm must be invoked to determine where 

any process is still dead locked.  

  

2. Resource Preemption  

Preemptive  some  resources  from  process  and  give  these  resources  to other processes until the 

deadlock cycle is broken.  

  

i.                   Selecting a victim: which resources and  which process are to  be preempted. 

ii.                 Rollback: if we preempt a resource from a process it cannot continue with 

its normal execution. It is missing some needed resource. we must rollback the process 

to some safe state, and restart it from that state. 

iii.              Starvation : How can we guarantee that resources will not always be 

preempted from the same process 

 


