UNIT 11

MEMORY MANAGEMENT

&
CODE g CAL

[UMOCCO

o

1=

Qs o

= 2 &
m‘ E‘t:li

U) RESOURCES O

u

O P E RATI NG ol
COMPC :_--w ¥ SYSTE

N

Memory management Virtual Memory Management

strategies - Background
* Background * Demand paging
* Swapping * Copy on write

* Contiguous Memory Allocation Page replacement algorithms

* Segmentation Allocation of frames

* Paging Thrashing.

* Structure of Page Table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

. Program must be brought (from disk) into memory and placed within a process for it
to be run

* Main memory and registers are only storage CPU can access directly

 Memory unit only sees a stream of addresses + read requests, or address + data

and write requests
* Register access in one CPU clock (or less)
* Main memory can take many cycles, causing a stall
* Cache sits between main memory and CPU registers

* Protection of memory required to ensure correct operation

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

* A pair of base and limit registers define the logical address space

* CPU must check every memory access generated in user mode to be sure it is

between base and limit for that user

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

(0]

256000

300040

420940

880000

1024000

operating
system
process
- 300040
process base
< 120900
limit
process

Base and Limit Registers

CPU

address

base

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

\%

no

yes

base + limit

no

trap to operating system
monitor—addressing error

yes

Hardware Address Protection

memory

Address Binding

* Programs on disk, ready to be brought into memory to execute form an input queue
* Without support, must be loaded into address 0000

* Inconvenient to have first user process physical address always at 0000
* Further, addresses represented in different ways at different stages of a program’s life
* Source code addresses usually symbolic
* Compiled code addresses bind to relocatable addresses
* i.e. “14 bytes from beginning of this module”
* Linker or loader will bind relocatable addresses to absolute addresses i.e. 74014

* Each binding maps one address space to another

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

R — '«\

Binding of Instructions and
Data to Memory

Address binding of instructions and data to memory addresses can happen at three

different stages

* Compile time: If memory location known a priori, absolute code can be

generated; must recompile code if starting location changes

* Load time: Must generate relocatable code if memory location is not known

at compile time

* Execution time: Binding delayed until run time if the process can be moved

during its execution from one memory segment to another

* Need hardware support for address maps (e.g., base and limit registers)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

INSIHTUTIONS,

Multistep Processing
of a User Program

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

other
object
modules

system
library

dynamicall
loaded
system
library

dynamic
linking

source
program

compiler or
assembler

object
module

linkage
editor

load
module

loader

!

iIn-memory
binary
memory
image

compile
time

load
time

execution
> time (run
time)

| vs. Physical Address Space

* The concept of a logical address space that is bound to a separate physical

address space is central to proper memory management
* Logical address - generated by the CPU; also referred to as virtual address
* Physical address - address seen by the memory unit
* Logical and physical addresses are the same in compile-time and load-time

address-binding schemes; logical (virtual) and physical addresses differ in

execution-time address-binding scheme
* Logical address space is the set of all logical addresses generated by a program

* Physical address space is the set of all physical addresses generated by a program

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

TN

emory-Management Unit (Mmu)

* Hardware device that at run time maps virtual to physical address

* To start, consider simple scheme where the value in the relocation register is
added to every address generated by a user process at the time it is sent to

memory

* Base register now called relocation register
* MS-DOS on Intel 80x86 used 4 relocation registers

* The user program deals with logical addresses; it never sees the real physical

addresses

* Execution-time binding occurs when reference is made to location in memory
* Logical address bound to physical addresses

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

R — '«\

eV ANd Dynamic relocation using
""" ik a relocation register

0 Routine is not loaded until it is called

0 Better memory-space utilization; unused
routine is never loaded
] . . relocation
0 All routines kept on disk in relocatable load register
format 14000
logical physical
0 Useful when large amounts of code are B ocddress NENENRNNN acddross [N
L [E " y
needed to handle infrequently occurring el - ieeo
cases
0 No special support from the operating MMU
system is required

0 Implemented through program design

0 OS can help by providing libraries to
implement dynamic loading

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Dynamic Linking N

* Static linking - system libraries and program code combined by the loader into the

binary program image
* Dynamic linking -linking postponed until execution time

* Small piece of code, stub, used to locate the appropriate memory-resident library

routine
» Stub replaces itself with the address of the routine, and executes the routine
* Operating system checks if routine is in processes’ memory address
* Dynamic linking is particularly useful for libraries

* System also known as shared libraries
Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Sapping TN

* A process can be swapped temporarily out of memory to a backing store, and

then brought back into memory for continued execution

* Backing store - fast disk large enough to accommodate copies of all memory

images for all users; must provide direct access to these memory images

* Roll out, roll in - swapping variant used for priority-based scheduling

algorithms; lower-priority process is swapped out so higher-priority process can

be loaded and executed

* Major part of swap time is transfer time; total transfer time is directly

proportional to the amount of memory swapped

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Swapping (Cont.)

* System maintains a ready queue of ready-to-run processes which have memory
images on disk

Does the swapped out process need to swap back in to same physical addresses?

Depends on address binding method
* Plus consider pending [/0 to / from process memory space

Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and

Windows)
* Swapping normally disabled
 Started if more than threshold amount of memory allocated

* Disabled again once memory demand reduced below threshold

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

N

e anepe vy
gt ap e G

f Schematic View of Swapping
INSITTU TL/ONS

.

operating i —
system
@ swapoul process P,
_ process P,
@ swap in
—-]
I

space backing store

main memory

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Context Switch Time) \
including Swapping

 If next processes to be put on CPU is not in memory, need to swap out a process and
swap in target process

* Context switch time can then be very high

* 100MB process swapping to hard disk with transfer rate of 50MB/sec

e Swap out time of 2000 ms
* Plus swap in of same sized process
 Total context switch swapping component time of 4000ms (4 seconds)

* Canreduce if reduce size of memory swapped - by knowing how much memory

really being used

 System calls to inform OS of memory use via request_memory() and
release_memory/()

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Context Switch Time and
Swapping (Cont.)

* Other constraints as well on swapping
* Pending I/O - can’t swap out as I/O would occur to wrong process
* Or always transfer I/0 to kernel space, then to /0 device

* Known as double buffering, adds overhead

» Standard swapping not used in modern operating systems
* But modified version common

* Swap only when free memory extremely low

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Swapbing on !
Mobile Systems

"+ Not typically supported

* Flash memory based

* Small amount of space
* Limited number of write cycles
* Poor throughput between flash memory and CPU on mobile platform

 Instead use other methods to free memory if low

* i0S asks apps to voluntarily relinquish allocated memory

* Read-only data thrown out and reloaded from flash if needed
 Failure to free can result in termination

* Android terminates apps if low free memory, but first writes application state to flash

for fast restart

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Contiguous Allocation .

Main memory must support both OS and user processes

Limited resource, must allocate efficiently

Contiguous allocation is one early method

Main memory usually into two partitions:

* Resident operating system, usually held in low memory with interrupt

vector
* User processes then held in high memory

* Each process contained in single contiguous section of memory

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

T —— '—\

Contiguous Allocation (Cont.)

* Relocation registers used to protect user processes from each other, and from

changing operating-system code and data
* Base register contains value of smallest physical address

* Limit register contains range of logical addresses - each logical address

must be less than the limit register
* MMU maps logical address dynamically

* Can then allow actions such as kernel code being transient and kernel

changing size

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

e Hardware Support for Relocation
b and Limit Registers

limnit relocation
register register
logical physical
address yes address
CPU < / = > memory
no
v .
trap: addressing error

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

* Degree of multiprogramming limited by number of partitions

Variable-partition sizes for efficiency (sized to a given process’ needs)

Hole - block of available memory; holes of various size are scattered

throughout memory

When a process arrives, it is allocated memory from a hole large enough to

accommodate it

Process exiting frees its partition, adjacent free partitions combined

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

* Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

oS oS oS oS
process 5 process 5 process 5 process 5
process 9 process 9
process 8 |— > —> > | process 10
process 2 process 2 process 2 process 2

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

; namic Storage-Allocation
Problem

How to satisfy a request of size n from a list of free holes?

 First-fit: Allocate the first hole that is big enough

* Best-fit: Allocate the smallest hole that is big enough; must search entire list,

unless ordered by size

* Produces the smallest leftover hole

* Worst-fit: Allocate the largest hole; must also search entire list

* Produces the largest leftover hole

First-fit and best-fit better than worst-fit in terms of speed and storage utilization

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Fragmentation

» External Fragmentation - total memory space exists to satisfy a request, but it

is not contiguous

* Internal Fragmentation - allocated memory may be slightly larger than
requested memory; this size difference is memory internal to a partition, but not

being used

* First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost to

fragmentation

* 1/3 may be unusable -> 50-percent rule

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

* Reduce external fragmentation by compaction
* Shuffle memory contents to place all free memory together in one large block
« Compaction is possible only if relocation is dynamic, and is done at execution
time
* I/0 problem
* Latch job in memory while it is involved in /0

* Do /0O only into OS buffers

* Now consider that backing store has same fragmentation problems

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

	Slide 1: Unit iII MEMORY MANAGEMENT
	Slide 2: MEMORY MANAGEMENT
	Slide 3: Background
	Slide 4: Base and Limit Registers
	Slide 5: Hardware Address Protection
	Slide 6: Address Binding
	Slide 7: Binding of Instructions and Data to Memory
	Slide 8: Multistep Processing of a User Program
	Slide 9: Logical vs. Physical Address Space
	Slide 10: Memory-Management Unit (MMU)
	Slide 11: Dynamic relocation using a relocation register
	Slide 12: Dynamic Linking
	Slide 13: Swapping
	Slide 14: Swapping (Cont.)
	Slide 15: Schematic View of Swapping
	Slide 16: Context Switch Time including Swapping
	Slide 17: Context Switch Time and Swapping (Cont.)
	Slide 18: Swapping on Mobile Systems
	Slide 19: Contiguous Allocation
	Slide 20: Contiguous Allocation (Cont.)
	Slide 21: Hardware Support for Relocation and Limit Registers
	Slide 22: Multiple-partition allocation
	Slide 23: Multiple-partition allocation
	Slide 24: Dynamic Storage-Allocation Problem
	Slide 25: Fragmentation
	Slide 26: Fragmentation (Cont.)

