
UNIT III

MEMORY MANAGEMENT

MEMORY MANAGEMENT

Memory management
strategies
• Background

• Swapping

• Contiguous Memory Allocation

• Segmentation

• Paging

• Structure of Page Table

Virtual Memory Management
• Background

• Demand paging

• Copy on write

• Page replacement algorithms

• Allocation of frames

• Thrashing.

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Background

• Program must be brought (from disk) into memory and placed within a process for it
to be run

• Main memory and registers are only storage CPU can access directly

• Memory unit only sees a stream of addresses + read requests, or address + data

and write requests

• Register access in one CPU clock (or less)

• Main memory can take many cycles, causing a stall

• Cache sits between main memory and CPU registers

• Protection of memory required to ensure correct operation

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Base and Limit Registers

• A pair of base and limit registers define the logical address space

• CPU must check every memory access generated in user mode to be sure it is

between base and limit for that user

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Hardware Address Protection

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Address Binding

• Programs on disk, ready to be brought into memory to execute form an input queue

• Without support, must be loaded into address 0000

• Inconvenient to have first user process physical address always at 0000

• Further, addresses represented in different ways at different stages of a program’s life

• Source code addresses usually symbolic

• Compiled code addresses bind to relocatable addresses

• i.e. “14 bytes from beginning of this module”

• Linker or loader will bind relocatable addresses to absolute addresses i.e. 74014

• Each binding maps one address space to another

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Binding of Instructions and
Data to Memory

Address binding of instructions and data to memory addresses can happen at three

different stages

• Compile time: If memory location known a priori, absolute code can be

generated; must recompile code if starting location changes

• Load time: Must generate relocatable code if memory location is not known

at compile time

• Execution time: Binding delayed until run time if the process can be moved

during its execution from one memory segment to another

• Need hardware support for address maps (e.g., base and limit registers)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Multistep Processing
of a User Program

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Logical vs. Physical Address Space

• The concept of a logical address space that is bound to a separate physical

address space is central to proper memory management

• Logical address – generated by the CPU; also referred to as virtual address

• Physical address – address seen by the memory unit

• Logical and physical addresses are the same in compile-time and load-time

address-binding schemes; logical (virtual) and physical addresses differ in

execution-time address-binding scheme

• Logical address space is the set of all logical addresses generated by a program

• Physical address space is the set of all physical addresses generated by a program

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Memory-Management Unit (MMU)

• Hardware device that at run time maps virtual to physical address

• To start, consider simple scheme where the value in the relocation register is

added to every address generated by a user process at the time it is sent to

memory

• Base register now called relocation register

• MS-DOS on Intel 80x86 used 4 relocation registers

• The user program deals with logical addresses; it never sees the real physical

addresses

• Execution-time binding occurs when reference is made to location in memory

• Logical address bound to physical addresses

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Dynamic relocation using
 a relocation register

Routine is not loaded until it is called

Better memory-space utilization; unused
routine is never loaded

All routines kept on disk in relocatable load
format

Useful when large amounts of code are
needed to handle infrequently occurring
cases

No special support from the operating
system is required

Implemented through program design

OS can help by providing libraries to
implement dynamic loading

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Dynamic Linking

• Static linking – system libraries and program code combined by the loader into the

binary program image

• Dynamic linking –linking postponed until execution time

• Small piece of code, stub, used to locate the appropriate memory-resident library

routine

• Stub replaces itself with the address of the routine, and executes the routine

• Operating system checks if routine is in processes’ memory address

• Dynamic linking is particularly useful for libraries

• System also known as shared libraries
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Swapping

• A process can be swapped temporarily out of memory to a backing store, and

then brought back into memory for continued execution

• Backing store – fast disk large enough to accommodate copies of all memory

images for all users; must provide direct access to these memory images

• Roll out, roll in – swapping variant used for priority-based scheduling

algorithms; lower-priority process is swapped out so higher-priority process can

be loaded and executed

• Major part of swap time is transfer time; total transfer time is directly

proportional to the amount of memory swapped

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Swapping (Cont.)

• System maintains a ready queue of ready-to-run processes which have memory
images on disk

• Does the swapped out process need to swap back in to same physical addresses?

• Depends on address binding method

• Plus consider pending I/O to / from process memory space

• Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and

Windows)

• Swapping normally disabled

• Started if more than threshold amount of memory allocated

• Disabled again once memory demand reduced below threshold

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Schematic View of Swapping

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Context Switch Time
 including Swapping

• If next processes to be put on CPU is not in memory, need to swap out a process and
swap in target process

• Context switch time can then be very high

• 100MB process swapping to hard disk with transfer rate of 50MB/sec

• Swap out time of 2000 ms

• Plus swap in of same sized process

• Total context switch swapping component time of 4000ms (4 seconds)

• Can reduce if reduce size of memory swapped – by knowing how much memory

really being used

• System calls to inform OS of memory use via request_memory() and
release_memory()

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Context Switch Time and
Swapping (Cont.)

• Other constraints as well on swapping

• Pending I/O – can’t swap out as I/O would occur to wrong process

• Or always transfer I/O to kernel space, then to I/O device

• Known as double buffering, adds overhead

• Standard swapping not used in modern operating systems

• But modified version common

• Swap only when free memory extremely low

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Swapping on
Mobile Systems

• Not typically supported

• Flash memory based

• Small amount of space

• Limited number of write cycles

• Poor throughput between flash memory and CPU on mobile platform

• Instead use other methods to free memory if low

• iOS asks apps to voluntarily relinquish allocated memory

• Read-only data thrown out and reloaded from flash if needed

• Failure to free can result in termination

• Android terminates apps if low free memory, but first writes application state to flash

for fast restart

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Contiguous Allocation

• Main memory must support both OS and user processes

• Limited resource, must allocate efficiently

• Contiguous allocation is one early method

• Main memory usually into two partitions:

• Resident operating system, usually held in low memory with interrupt

vector

• User processes then held in high memory

• Each process contained in single contiguous section of memory

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Contiguous Allocation (Cont.)

• Relocation registers used to protect user processes from each other, and from

changing operating-system code and data

• Base register contains value of smallest physical address

• Limit register contains range of logical addresses – each logical address

must be less than the limit register

• MMU maps logical address dynamically

• Can then allow actions such as kernel code being transient and kernel

changing size

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Hardware Support for Relocation
 and Limit Registers

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Multiple-partition allocation

• Degree of multiprogramming limited by number of partitions

• Variable-partition sizes for efficiency (sized to a given process’ needs)

• Hole – block of available memory; holes of various size are scattered

throughout memory

• When a process arrives, it is allocated memory from a hole large enough to

accommodate it

• Process exiting frees its partition, adjacent free partitions combined

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Multiple-partition allocation

• Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Dynamic Storage-Allocation
 Problem

• First-fit: Allocate the first hole that is big enough

• Best-fit: Allocate the smallest hole that is big enough; must search entire list,

unless ordered by size

• Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole; must also search entire list

• Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage utilization

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Fragmentation

• External Fragmentation – total memory space exists to satisfy a request, but it

is not contiguous

• Internal Fragmentation – allocated memory may be slightly larger than

requested memory; this size difference is memory internal to a partition, but not

being used

• First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost to

fragmentation

• 1/3 may be unusable -> 50-percent rule

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Fragmentation (Cont.)

• Reduce external fragmentation by compaction

• Shuffle memory contents to place all free memory together in one large block

• Compaction is possible only if relocation is dynamic, and is done at execution

time

• I/O problem

• Latch job in memory while it is involved in I/O

• Do I/O only into OS buffers

• Now consider that backing store has same fragmentation problems

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

	Slide 1: Unit iII MEMORY MANAGEMENT
	Slide 2: MEMORY MANAGEMENT
	Slide 3: Background
	Slide 4: Base and Limit Registers
	Slide 5: Hardware Address Protection
	Slide 6: Address Binding
	Slide 7: Binding of Instructions and Data to Memory
	Slide 8: Multistep Processing of a User Program
	Slide 9: Logical vs. Physical Address Space
	Slide 10: Memory-Management Unit (MMU)
	Slide 11: Dynamic relocation using a relocation register
	Slide 12: Dynamic Linking
	Slide 13: Swapping
	Slide 14: Swapping (Cont.)
	Slide 15: Schematic View of Swapping
	Slide 16: Context Switch Time including Swapping
	Slide 17: Context Switch Time and Swapping (Cont.)
	Slide 18: Swapping on Mobile Systems
	Slide 19: Contiguous Allocation
	Slide 20: Contiguous Allocation (Cont.)
	Slide 21: Hardware Support for Relocation and Limit Registers
	Slide 22: Multiple-partition allocation
	Slide 23: Multiple-partition allocation
	Slide 24: Dynamic Storage-Allocation Problem
	Slide 25: Fragmentation
	Slide 26: Fragmentation (Cont.)

