

Memory Management

 Memory consists of a large array of words or bytes, each with its own address. The CPU fetches

instructions from memory according to the value of the program counter. These instructions

may cause additional loading from and storing to specific memory addresses.

 Memory unit sees only a stream of memory addresses. It does not know how they are generated.

 Program must be brought into memory and placed within a process for it to be run.

 Input queue – collection of processes on the disk that are waiting to be brought into memory for

execution. User programs go through several steps before being run.

Address binding of instructions and data to memory addresses can happen at three different stages.

 Compile time: If memory location known a priori, absolute code can be generated; must

recompile code if starting location changes.

Example: .COM-format programs in MS-DOS.

 Load time: Must generate relocatable code if memory location is not known at compile time.

 Execution time: Binding delayed until run time if the process can be moved during its

execution from one memory segment to another. Need hardware support for address maps

(e.g., relocation registers).

Logical Versus Physical Address Space

 The concept of a logical address space that is bound to a separate physicaladdress space is

central to proper memory management.

o Logical address – address generated by the CPU; also referred to as virtual address.

o Physical address – address seen by the memory unit.

 The set of all logical addresses generated by a program is a logical address space; the set of all

physical addresses corresponding to these logical addresses are a physical address space.

 Logical and physical addresses are the same in compile-time and load-time address-binding

schemes; logical (virtual) and physical addresses differ in execution-time address-binding

scheme.

 The run-time mapping from virtual to physical addresses is done by a hardware device called the

memory management unit (MMU).

 This method requires hardware support slightly different from the hardware configuration. The

base register is now called a relocation register. The value in the relocation register is added to

every address generated by a user process at the time it is sent to memory.

 The user program never sees the real physical addresses. The program can create a pointer to

location 346, store it in memory, manipulate it and compare it to other addresses. The user

program deals with logical addresses. The memory mapping hardware converts logical addresses

into physical addresses. The final location of a referenced memory address is not determined

until the reference is made.

Dynamic Loading

 Routine is not loaded until it is called.

 All routines are kept on disk in a relocatable load format.

 The main program is loaded into memory and is executed. When a routine needs to call another

routine, the calling routine first checks to see whether the other the desired routine into memory

and to update the program’s address tables to reflect this change. Then control is passed to the

newly loaded routine.

 Better memory-space utilization; unused routine is never loaded.

 Useful when large amounts of code are needed to handle infrequently occurring cases.

 No special support from the operating system is required.

 Implemented through program design.

Dynamic Linking

 Linking is postponed until execution time.

 Small piece of code, stub, is used to locate the appropriate memory-resident library routine, or to

load the library if the routine is not already present.

 When this stub is executed, it checks to see whether the needed routine is already in memory. If

not, the program loads the routine into memory.

 Stub replaces itself with the address of the routine, and executes the routine.

 Thus the next time that code segment is reached, the library routine is executed directly,

incurring no cost for dynamic linking.

 Operating system is needed to check if routine is in processes’ memory address.

 Dynamic linking is particularly useful for libraries.

Swapping

 A process can be swapped temporarily out of memory to a backing store, and then brought back

into memory for continued execution. For example, assume a multiprogramming environment

with a round robin CPU scheduling algorithm. When a quantum expires, the memory manager

will start to swap out the process that just finished, and to swap in another process to the

memory space that has been freed. In the mean time, the CPU scheduler will allocate a time slice

to some other process in memory. When each process finished its quantum, it will be swapped

with another process. Ideally, the memory manager can swap processes fast enough that some

processes will be in memory, ready to execute, when the CPU scheduler wants to reschedule the

CPU. The quantum must also be sufficiently large that reasonable amounts of computing are

done between swaps.

 Roll out, roll in – swapping variant used for priority-based scheduling algorithms. If a higher

priority process arrives and wants service, the memory manager can swap out the lower priority

process so that it can load and execute lower priority process can be swapped back in and

continued. This variant is some times called roll out, roll in. Normally a process that is swapped

out will be swapped back into the same memory space that it occupied previously. This

restriction is dictated by the process cannot be moved to different locations. If execution time

binding is being used, then a process can be swapped into a different memory space, because the

physical addresses are computed during execution time.

 Backing store – fast disk large enough to accommodate copies of all memory images for all

users; must provide direct access to these memory images. It must be large enough to

accommodate copies of all memory images for all users, and it must provide direct access to

these memory images. The system maintains a ready queue consisting of all processes whose

memory images are scheduler decides to execute a process it calls the dispatcher. The dispatcher

checks to see whether the next process in the queue is in memory. If not, and there is no free

memory region, the dispatcher swaps out a process currently in memory and swaps in the

desired process. It then reloads registers as normal and transfers control to the selected process.

 Major part of swap time is transfer time; total transfer time is directly proportional to the

amount of memory swapped.

 Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and Windows).

Contiguous Memory Allocation

 Main memory is usually divided into two partitions:

o Resident operating system, usually held in low memory with interrupt vector.

o User processes, held in high memory.

 In contiguous memory allocation, each process is contained in a single contiguous section of

memory.

 Single-partition allocation

o Relocation-register scheme used to protect user processes from each other, and from

changing operating-system code and data.

o Relocation register contains value of smallest physical address; limit register contains

range of logical addresses – each logical address must be less than the limit register.

 Multiple-partition allocation

o Hole – block of available memory; holes of various size are scattered throughout

memory.

o When a process arrives, it is allocated memory from a hole large enough to

accommodate it.

o Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

o A set of holes of various sizes, is scattered throughout memory at any given time. When

a process arrives and needs memory, the system searches this set for a hole that is large

enough for this process. If the hole is too large, it is split into two: one part is allocated

to the arriving process; the other is returned to the set of holes. When a process

terminates, it releases its block of memory, which is then placed back in the set of holes.

If the new hold is adjacent to other holes, these adjacent holes are merged to form one

larger hole.

o This procedure is a particular instance of the general dynamic storage allocation

problem, which is how to satisfy a request of size n from a list of free holes. There are

many solutions to this problem. The set of holes is searched to determine which hole is

best to allocate. The first-fit, best-fit and worst-fit strategies are the most common ones

used to select a free hole from the set of available holes.

o First-fit: Allocate the first hole that is big enough.

o Best-fit: Allocate the smallest hole that is big enough; must search entire list, unless

ordered by size.

o Worst-fit: Allocate the largest hole; must also search entire list.

Fragmentation

 External Fragmentation – total memory space exists to satisfy a request, but it is not

contiguous.

 Internal Fragmentation – allocated memory may be slightly larger than requested memory; this

size difference is memory internal to a partition, but not being used.

 Reduce external fragmentation by compaction

o Shuffle memory contents to place all free memory together in one large block.

o Compaction is possible only if relocation is dynamic, and is done at execution time.

Paging

 Paging is a memory management scheme that permits the physical address space of a process to

be non contiguous.

 Divide physical memory into fixed-sized blocks called frames (size is power of 2, for example

512 bytes).

 Divide logical memory into blocks of same size called pages. When a process is to be executed,

its pages are loaded into any available memory frames from the backing store. The backing store

is divided into fixed sized blocks that are of the same size as the memory frames.

 The hardware support for paging is illustrated in below figure.

 Every address generated by the CPU is divided into two parts: a page number (p) and a page

offset (d). The page number is used as an index into a page table. The page table contains the

base address of each page in physical memory. This base address is combined with the page

offset to define the physical memory address that is sent to the memory unit.

 The paging model of memory is shown in below figure. The page size is defined by the

hardware. The size of a page is typically of a power of 2, varying between 512 bytes and 16 MB

per page, depending on the computer architecture. The selection of a power of 2 as a page size

makes the translation of a logical address into a page number and page offset particularly easy. If

the size of logical address is 2m, and a page size is 2n addressing units, then the high order m-n

bits of a logical address designate the page number, and the n low order bits designate the page

offset.

 Keep track of all free frames.

 To run a program of size n pages, need to find n free frames and load program.

 Set up a page table to translate logical to physical addresses.

 Internal fragmentation may occur.

Let us take an example. Suppose a program needs 32 KB memory for allocation. The whole

program is divided into smaller units assuming 4 KB and is assigned some address. The address

consists of two parts such as:

 A large number in higher order positions and

 Displacement or offset in the lower order bits.

The numbers allocated to pages are typically in power of 2 to simplify extraction of page numbers

and offsets. To access a piece of data at a given address, the system first extracts the page number

and the offset. Then it translates the page number to physical page frame and access data at offset in

physical page frame. At this moment, the translation of the address by the OS is done using a page

table. Page table is a linear array indexed by virtual page number which provides the physical page

frame that contains the particular page. It employs a lookup process that extracts the page number

and the offset. The system in addition checks that the page number is within the address space of

process and retrieves the page number in the page table. Physical address will calculated by using the

formula.

Physical address = page size of logical memory X frame number + offset

When a process arrives in the system to be executed, its size expressed in pages is examined. Each

page of the process needs one frame. Thus if the process requires n pages, at least n frames must be

available in memory. If n frames are available, they are allocated to this arriving process. The first

page of the process is loaded into one of the allocated frames, and the frame number is put in the

page table for this process. The next page is loaded into another frame, and its frame number is put

into the page table and so on as in below figure. An important aspect of paging is the clear

separation between the user’s view of memory and the actual physical memory. The user program

views that memory as one single contiguous space, containing only this one program. In fact, the

user program is scattered throughout physical memory, which also holds other programs. The

difference between the user’s view of memory and the actual physical memory is reconciled by the

address-translation hardware. The logical addresses are translated into physical addresses. This

mapping is hidden from the user and is controlled by the operating system.

Implementation of Page Table

 Page table is kept in main memory.

 Page-tablebase register (PTBR) points to the page table.

 In this scheme every data/instruction-byte access requires two memory accesses. One for the

page-table entry and one for the byte.

 The two memory access problem can be solved by the use of a special fast-lookup hardware

cache called associative registers or associative memory or translation look-aside buffers(TLBs).

 Typically, the number of entries in a TLB is between 32 and 1024.

 The TLB contains only a few of the page table entries. When a logical address is generated

by the CPU, its page number is presented to the TLB. If the page number is found, its frame

number is immediately available and is used to access memory. The whole task may take less

than 10 percent longer than it would if an unmapped memory reference were used.

 If the page number is not in the TLB (known as a TLB miss), a memory reference to the

page table must be made. When the frame number is obtained, we can use it to access

memory.

Hit Ratio

 Hit Ratio: the percentage of times that a page number is found in the associative registers.

 For example, if it takes 20 nanoseconds to search the associative memory and 100 nanoseconds

to access memory; for a 98-percent hit ratio, we have

Effective memory-access time = 0.98 x 120 + 0.02 x 220

= 122 nanoseconds.

 The Intel 80486 CPU has 32 associative registers, and claims a 98-percent hit ratio.

Valid or invalid bit in a page table

 Memory protection implemented by associating protection bit with each frame.

 Valid-invalid bit attached to each entry in the page table:

o “Valid” indicates that the associated page is in the process’ logical address space, and is

thus a legal page.

o “Invalid” indicates that the page is not in the process’ logical address space.

 Pay attention to the following figure. The program extends to only address 10,468, any reference

beyond that address is illegal. However, references to page 5 are classified as valid, so accesses to

addresses up to 12,287 are valid. This reflects the internal fragmentation of paging.

Structure of the Page Table

Hierarchical Paging:

 A logical address (on 32-bit machine with 4K page size) is divided into:

o A page number consisting of 20 bits.

o A page offset consisting of 12 bits.

 Since the page table is paged, the page number is further divided into:

o A 10-bit page number.

o A 10-bit page offset.

 Thus, a logical address is as follows:

Where p1 is an index into the outer page table, and p2 is the displacement within the page of the

outer page table.The below figure shows a two level page table scheme.

Address-translation scheme for a two-level 32-bit paging architecture is shown in below figure.

Hashed Page Table:

A common approach for handling address spaces larger than 32 bits is to use a hashed page table,

with the hash value being the virtual page number. Each entry in the hash table contains a linked list

of elements that has to the same location. Each element consists of three fields: (a) the virtual page

number, (b) the value of the mapped page frame, and (c) a pointer to the next element in the linked

list. The algorithm works as follows: The virtual page number in the virtual address is hashed into

the hash table. The virtual page number is compared to field (a) in the first element in the linked list.

If there is a match, the corresponding page frame (field (b)) is used to form the desired physical

address. If there is no match, subsequent entries in the linked list are searched for a matching virtual

page number. The scheme is shown in below figure.

Inverted Page Table:

 One entry for each real page (frame) of memory.

 Entry consists of the virtual address of the page stored in that real memory location, with

information about the process that owns that page.

 There is only one page table in the system. Not per process.

 Decreases memory needed to store each page table, but increases time needed to search the table

when a page reference occurs.

 Use hash table to limit the search to one — or at most a few — page-table entries.

Each virtual address in the system consists of a triple <process-id, page-number, offset>. Each

inverted page table entry is a pair <process-id, page-number> where the process-id assumes the role

of the address space identifier. When a memory reference occurs, part of the virtual address,

consisting of <process-id, page-number>, is presented to the memory subsystem. The inverted page

table is then searched for a match. If a match is found say at entry i, then the physical address <i,

offset> is generated. If no match is found, then an illegal address access has been attempted.

Shared Page:

 Shared code

o One copy of read-only (reentrant) code shared among processes (i.e., text editors,

compilers, window systems).

o Shared code must appear in same location in the logical address space of all processes.

 Private code and data

o Each process keeps a separate copy of the code and data.

o The pages for the private code and data can appear anywhere in the logical address

space.

Reentrant code or pure code is non self modifying code. If the code is reentrant, then it never

changes during execution. Thus, two or more processes can execute the same code at the same time.

Each process has its own copy of registers and data storage to hold the data for the process’

execution. The data for two different processes will of course vary for each process.

Segmentation

 Memory-management scheme that supports user view of memory.

 A program is a collection of segments. A segment is a logical unit such as:

 Main program,

 Procedure,

 Function,

 Method,

 Object,

 Local variables, global variables,

 Common block,

 Stack,

 Symbol table, arrays

 Segmentation is a memory management scheme that supports this user view of memory.

 A logical address space is a collection of segments. Each segment has a name and a length.

 The addresses specify both the segment name and the offset within the segment.

 The user therefore specifies each address by two quantities such as segment name and an offset.

For simplicity of implementation, segments are numbered and are referred to by a segment

number, rather than by a segment name.

 Logical address consists of a two tuples:

 <segment-number, offset>

 Segment table – maps two-dimensional physical addresses; each table entry has:

o Base – contains the starting physical address where the segments reside in memory.

o Limit – specifies the length of the segment.

 Segment-table base register (STBR) points to the segment table’s location in memory.

 Segment-table length register (STLR) indicates number of segments used by a program;

 Segment number s is legal if s< STLR.

 When the user program is compiled by the compiler it constructs the segments.

 The loader takes all the segments and assigned the segment numbers.

 The mapping between the logical and physical address using the segmentation technique is

shown in above figure.

 Each entry in the segment table as limit and base address.

 The base address contains the starting physical address of a segment where the limit address

specifies the length of the segment.

 The logical address consists of 2 parts such as segment number and offset.

The segment number Segmentation with Paging

 Both paging and segmentation have advantages and disadvantages, that’s why we can combine

these two methods to improve this technique for memory allocation.

 These combinations are best illustrated by architecture of Intel-386.

 The IBM OS/2 is an operating system of the Intel-386 architecture. In this technique both

segment table and page table is required.

 The program consists of various segments given by the segment table where the segment table

contains different entries one for each segment.

 Then each segment is divided into a number of pages of equal size whose information is

maintained in a separate page table.

 If a process has four segments that is 0 to 3 then there will be 4 page tables for that process, one

for each segment.

 The size fixed in segmentation table (SMT) gives the total number of pages and therefore

maximum page number in that segment with starting from 0.

 If the page table or page map table for a segment has entries for page 0 to 5.

 The address of the entry in the PMT for the desired page p in a given segment s can be obtained

by B + P where B can be obtained from the entry in the segmentation table.

 Using the address (B +P) as an index in page map table (page table), the page frame (f) can be

obtained and physical address can be obtained by adding offset to page frame.

Virtual Memory

 It is a technique which allows execution of process that may not be compiled within the primary

memory.

 It separates the user logical memory from the physical memory. This separation allows an

extremely large memory to be provided for program when only a small physical memory is

available.

 Virtual memory makes the task of programming much easier because the programmer no longer

needs to working about the amount of the physical memory is available or not.

 The virtual memory allows files and memory to be shared by different processes by page

sharing.

 It is most commonly implemented by demand paging.

Demand Paging

A demand paging system is similar to the paging system with swapping feature. When we want to

execute a process we swap it into the memory. A swapper manipulates entire process where as a

pager is concerned with the individual pages of a process. The demand paging concept is using pager

rather than swapper. When a process is to be swapped in, the pager guesses which pages will be used

before the process is swapped out again. Instead of swapping in a whole process, the pager brings

only those necessary pages into memory. The transfer of a paged memory to contiguous disk space

is shown in below figure.

Thus it avoids reading into memory pages that will not used any way decreasing the swap time and

the amount of physical memory needed. In this technique we need some hardware support to

distinct between the pages that are in memory and those that are on the disk. A valid and invalid bit

is used for this purpose. When this bit is set to valid it indicates that the associate page is in memory.

If the bit is set to invalid it indicates that the page is either not valid or is valid but currently not in

the disk.

Marking a page invalid will have no effect if the process never attempts to access that page. So while

a process executes and access pages that are memory resident, execution proceeds normally. Access

to a page marked invalid causes a page fault trap. It is the result of the OS’s failure to bring the

desired page into memory.

Procedure to handle page fault

If a process refers to a page that is not in physical memory then

 We check an internal table (page table) for this process to determine whether the reference was

valid or invalid.

 If the reference was invalid, we terminate the process, if it was valid but not yet brought in, we

have to bring that from main memory.

 Now we find a free frame in memory.

 Then we read the desired page into the newly allocated frame.

 When the disk read is complete, we modify the internal table to indicate that the page is now in

memory.

 We restart the instruction that was interrupted by the illegal address trap. Now the process can

access the page as if it had always been in memory.

Page Replacement

 Each process is allocated frames (memory) which hold the process’s pages (data)

 Frames are filled with pages as needed – this is called demand paging

 Over-allocation of memory is prevented by modifying the page-fault service routine to replace

pages

 The job of the page replacement algorithm is to decide which page gets victimized to make

room for a new page

 Page replacement completes separation of logical and physical memory

Page Replacement Algorithm

Optimal algorithm

 Ideally we want to select an algorithm with the lowest page-fault rate

 Such an algorithm exists, and is called (unsurprisingly) the optimal algorithm:

 Procedure: replace the page that will not be used for the longest time (or at all) – i.e. replace the

page with the greatest forward distance in the reference string

 Example using 4 frames:

Reference # 1 2 3 4 5 6 7 8 9 10 11 12

Page referenced 1 2 3 4 1 2 5 1 2 3 4 5

Frames

_ = faulting page

1 1 1 1 1 1 1 1 1 1 4 4

 2 2 2 2 2 2 2 2 2 2 2

 3 3 3 3 3 3 3 3 3 3

 4 4 4 5 5 5 5 5 5

 Analysis: 12 page references, 6 page faults, 2 page replacements. Page faults per number of

frames = 6/4 = 1.5

 Unfortunately, the optimal algorithm requires special hardware (crystal ball, magic mirror, etc.)

not typically found on today’s computers

 Optimal algorithm is still used as a metric for judging other page replacement algorithms

FIFO algorithm

 Replaces pages based on their order of arrival: oldest page is replaced

 Example using 4 frames:

Reference # 1 2 3 4 5 6 7 8 9 10 11 12

Page referenced 1 2 3 4 1 2 5 1 2 3 4 5

Frames

_ = faulting page

1 1 1 1 1 1 5 5 5 5 4 4

 2 2 2 2 2 2 1 1 1 1 5

 3 3 3 3 3 3 2 2 2 2

 4 4 4 4 4 4 3 3 3

 Analysis: 12 page references, 10 page faults, 6 page replacements. Page faults per number of

frames = 10/4 = 2.5

LFU algorithm (page-based)

 procedure: replace the page which has been referenced least often

 For each page in the reference string, we need to keep a reference count. All reference counts

start at 0 and are incremented every time a page is referenced.

 example using 4 frames:

Reference # 1 2 3 4 5 6 7 8 9 10 11 12

Page referenced 1 2 3 4 1 2 5 1 2 3 4 5

Frames

_ = faulting page

n = reference count

11 11 11 11 21 21 21 31 31 31 31 31

12 12 12 12 22 22 22 32 32 32 32

13 13 13 13 15 15 15 23 23 25

14 14 14 14 14 14 14 24 24

 At the 7th page in the reference string, we need to select a page to be victimized. Either 3 or 4

will do since they have the same reference count (1). Let’s pick 3.

 Likewise at the 10th page reference; pages 4 and 5 have been referenced once each. Let’s pick

page 4 to victimize. Page 3 is brought in, and its reference count (which was 1 before we paged

it out a while ago) is updated to 2.

 Analysis: 12 page references, 7 page faults, 3 page replacements. Page faults per number of

frames = 7/4 = 1.75

LFU algorithm (frame-based)

 Procedure: replace the page in the frame which has been referenced least often

 Need to keep a reference count for each frame which is initialized to 1 when the page is paged

in, incremented every time the page in the frame is referenced, and reset every time the page in

the frame is replaced

 Example using 4 frames:

Reference # 1 2 3 4 5 6 7 8 9 10 11 12

Page referenced 1 2 3 4 1 2 5 1 2 3 4 5

Frames

_ = faulting page

n = reference count

11 11 11 11 21 21 21 31 31 31 31 31

12 12 12 12 22 22 22 32 32 32 32

13 13 13 13 15 15 15 13 13 15

14 14 14 14 14 14 14 24 24

 At the 7th reference, we victimize the page in the frame which has been referenced least often --

in this case, pages 3 and 4 (contained within frames 3 and 4) are candidates, each with a reference

count of 1. Let’s pick the page in frame 3. Page 5 is paged in and frame 3’s reference count is

reset to 1.

 At the 10th reference, we again have a page fault. Pages 5 and 4 (contained within frames 3 and

4) are candidates, each with a count of 1. Let’s pick page 4. Page 3 is paged into frame 3, and

frame 3’s reference count is reset to 1.

 Analysis: 12 page references, 7 page faults, 3 page replacements. Page faults per number of

frames = 7/4 = 1.75

LRU algorithm

 Replaces pages based on their most recent reference – replace the page with the greatest

backward distance in the reference string

 Example using 4 frames:

Reference # 1 2 3 4 5 6 7 8 9 10 11 12

Page referenced 1 2 3 4 1 2 5 1 2 3 4 5

Frames

_ = faulting page

1 1 1 1 1 1 1 1 1 1 1 5

 2 2 2 2 2 2 2 2 2 2 2

 3 3 3 3 5 5 5 5 4 4

 4 4 4 4 4 4 3 3 3

 Analysis: 12 page references, 8 page faults, 4 page replacements. Page faults per number of

frames = 8/4 = 2

 One possible implementation (not necessarily the best):

o Every frame has a time field; every time a page is referenced, copy the current time into

its frame’s time field

o When a page needs to be replaced, look at the time stamps to find the oldest

Thrashing

• If a process does not have “enough” pages, the page-fault rate is very high

– low CPU utilization

– OS thinks it needs increased multiprogramming

– adds another process to system

• Thrashing is when a process is busy swapping pages in and out

• Thrashing results in severe performance problems. Consider the following scenario, which is

based on the actual behaviour of early paging systems. The operating system monitors CPU

utilization. If CPU utilization is too low, we increase the degree of multiprogramming by

introducing a new process to the system. A global page replacement algorithm is used; it

replaces pages with no regard to the process to which they belong. Now suppose that a

process enters a new phase in its execution and needs more frames.

FILE SYSTEM

File concept:

A file is a collection of related information that is stored on secondary storage. Information stored in

files must be persistent i.e. not affected by power failures & system reboots. Files may be of free

from such as text files or may be formatted rigidly. Files represent both programs as well as data.

Part of the OS dealing with the files is known as file system. The important file concepts include:

1. File attributes: A file has certain attributes which vary from one operating system to another.

 Name: Every file has a name by which it is referred.

 Identifier: It is unique number that identifies the file within the file system.

 Type: This information is needed for those systems that support different types of files.

 Location: It is a pointer to a device & to the location of the file on that device

 Size: It is the current size of a file in bytes, words or blocks.

 Protection: It is the access control information that determines who can read, write &

execute a file.

 Time, date & user identification: It gives information about time of creation or last

modification & last use.

2. File operations: The operating system can provide system calls to create, read, write, reposition,

delete and truncate files.

 Creating files: Two steps are necessary to create a file. First, space must be found for the

file in the file system. Secondly, an entry must be made in the directory for the new file.

 Reading a file: Data & read from the file at the current position. The system must keep a

read pointer to know the location in the file from where the next read is to take place. Once

the read has been taken place, the read pointer is updated.

 Writing a file: Data are written to the file at the current position. The system must keep a

write pointer to know the location in the file where the next write is to take place. The write

pointer must be updated whenever a write occurs.

 Repositioning within a file (seek): The directory is searched for the appropriate entry &

the current file position is set to a given value. After repositioning data can be read from or

written into that position.

 Deleting a file: To delete a file, we search the directory for the required file. After deletion,

the space is releasedso that it can be reused by other files.

 Truncating a file: The user may erase the contents of a file but allows all attributes to

remain unchanged expect the file length which is rest to ‘O’ & the space is released.

3. File types: The file name is spilt into 2 parts, Name & extension. Usually these two parts are

separated by a period. The user & the OS can know the type of the file from the extension itself.

Listed below are some file types along with their extension:

File Type Extension

Executable File exe, bin, com

Object File obj, o (compiled)

Source Code file C, C++, Java, pas

Batch File bat, sh (commands to command the interpreter)

Text File txt, doc (textual data documents)

arc, zip, tar (related files grouped together into file compressed for

Archieve File storage)

Multimedia File mpeg (Binary file containing audio or A/V information)

4. File structure: Files can be structured in several ways. Three common possible are:

 Byte sequence:The figure shows an unstructured sequence of bytes. The OS doesn’t care

about the content of file. It only sees the bytes. This structure provides maximum flexibility.

Users can write anything into their files & name them according to their convenience. Both

UNIX & windows use this approach.

byte

 Record sequence: In this structure, a file is a sequence of fixed length records. Here the

read operation returns one records & the write operation overwrites or append or record.

Record

 Tree:In this organization, a file consists of a tree of records of varying lengths. Each record

consists of a key field. The tree is stored on the key field to allow first searching for a

particular key.

Access methods: Basically, access method is divided into 2 types:

 Sequential access: It is the simplest access method. Information in the file is processed in

order i.e. one record after another. A process can read all the data in a file in order starting

from beginning but can’t skip & read arbitrarily from any location. Sequential files can be

rewound. It is convenient when storage medium was magnetic tape rather than disk.

 Direct access: A file is made up of fixed length-logical records that allow programs to read

& write records rapidly in no particular O order. This method can be used when disk are

used for storing files. This method is used in many applications e.g. database systems. If an

airline customer wants to reserve a seat on a particular flight, the reservation program must

be able to access the record for that flight directly without reading the records before it. In a

direct access file, there is no restriction in the order of reading or writing. For example, we

can read block 14, then read block 50 & then write block 7 etc. Direct access files are very

useful for immediate access to large amount of information.

Directory structure: The file system of computers can be extensive. Some systems store thousands

of file on disk. To manage all these data, we need to organize them. The organization is done in 2

steps. The file system is broken into partitions. Each partition contains information about file within

it.

Operation on a directory:

 Search for a file: We need to be able to search a directory for a particular file.

 Create a file: New files are created & added to the directory.

 Delete a file: When a file is no longer needed, we may remove it from the directory.

 List a directory: We should be able to list the files of the directory.

 Rename a file: The name of a file is changed when the contents of the file changes.

 Traverse the file system: It is useful to be able to access every directory & every file

within a directory.

Structure of a directory: The most common schemes for defining the structure of the directory

are:

1. Single level directory: It is the simplest directory structure. All files are present in the same

directory. So it is easy to manage & understand.

Limitation: A single level directory is difficult to manage when the no. of files increases or

when there is more than one user. Since all files are in same directory, they must have unique

names. So, there is confusion of file names between different users.

2. Two level directories: The solution to the name collision problem in single level directory is to

create a separate directory for each user. In a two level directory structure, each user has its own

user file directory. When a user logs in, then master file directory is searched. It is indexed by

user name & each entry points to the UFD of that user.

Limitation: It solves name collision problem. But it isolates one user from another. It is an

advantage when users are completely independent. But it is a disadvantage when the users need

to access each other’s files & co-operate among themselves on a particular task.

3. Tree structured directories: It is the most common directory structure. A two level directory is

a two level tree. So, the generalization is to extend the directory structure to a tree of arbitrary

height. It allows users to create their own subdirectories & organize their files. Every file in the

system has a unique path name. It is the path from the root through all the sub-directories to a

specified file. A directory is simply another file but it is treated in a special way. One bit in each

directory entry defines the entry as a file (O) or as sub- directories. Each user has a current

directory. It contains most of the files that are of current interest to the user. Path names can be

of two types: An absolute path name begins from the root directory & follows the path down to

the specified files. A relative path name defines the path from the current directory. E.g. If the

current directory is root/spell/mail, then the relative path name is prt/first & the absolute path

name is root/ spell/ mail/ prt/ first. Here users can access the files of other users also by

specifying their path names.

4. A cyclic graph directory:It is a generalization of tree structured directory scheme. An a cyclic

graph allows directories to have shared sub-directories & files. A shared directory or file is not

the same as two copies of a file. Here a programmer can view the copy but the changes made in

the file by one programmer are not reflected in the other’s copy. But in a shared file, there is

only one actual file. So many changes made by a person would be immediately visible to others.

This scheme is useful in a situation where several people are working as a team. So, here all the

files that are to be shared are put together in one directory. Shared files and sub-directories can

be implemented in several ways. A common way used in UNIX systems is to create a new

directory entry called link. It is a pointer to another file or sub-directory. The other approach is

to duplicate all information in both sharing directories. A cyclic graph structure is more flexible

then a tree structure but it is also more complex.

Limitation: Now a file may have multiple absolute path names. So, distinct file names may refer

to the same file. Another problem occurs during deletion of a shared file. When a file is removed

by any one user. It may leave dangling pointer to the non existing file. One serious problem in a

cyclic graph structure is ensuring that there are no cycles. To avoid these problems, some

systems do not allow shared directories or files. E.g. MS-DOS uses a tree structure rather than a

cyclic to avoid the problems associated with deletion. One approach for deletion is to preserve

the file until all references to it are deleted. To implement this approach, we must have some

mechanism for determining the last reference to the file. For this we have to keep a list of

reference to a file. But due to the large size of the no. of references. When the count is zero, the

file can be deleted.

5. General graph directory: When links are added to an existing tree structured directory, the

tree structure is destroyed, resulting in a simple graph structure. Linking is a technique that

allows a file to appear in more than one directory. The advantage is the simplicity of algorithm to

transverse the graph & determines when there are no more references to a file. But a similar

problem exists when we are trying to determine when a file can be deleted. Here also a value

zero in the reference count means that there are no more references to the file or directory & the

file can be deleted. But when cycle exists, the reference count may be non-zero even when there

are no references to the directory or file. This occurs due to the possibility of self referencing

(cycle) in the structure. So, here we have to use garbage collection scheme to determine when

the last references to a file has been deleted & the space can be reallocated. It involves two steps:

 Transverse the entire file system & mark everything that can be accessed.

 Everything that isn’t marked is added to the list of free space.

But this process is extremely time consuming. It is only necessary due to presence of cycles in

the graph. So, a cyclic graph structure is easier to work than this.

Protection

When information is kept in a computer system, a major concern is its protection from physical

damage (reliability) as well as improper access.

Types of access: In case of systems that don’t permit access to the files of other users. Protection

is not needed. So, one extreme is to provide protection by prohibiting access. The other extreme is

to provide free access with no protection. Both these approaches are too extreme for general use.

So, we need controlled access. It is provided by limiting the types of file access. Access is permitted

depending on several factors. One major factor is type of access requested. The different type of

operations that can be controlled are:

 Read

 Write

 Execute

 Append

 Delete

 List

Access lists and groups:

Various users may need different types of access to a file or directory. So, we can associate an access

lists with each file and directory to implement identity dependent access. When a user access

requests access to a particular file, the OS checks the access list associated with that file. If that user

is granted the requested access, then the access is allowed. Otherwise, a protection violation occurs

& the user is denied access to the file. But the main problem with access lists is their length. It is

very tedious to construct such a list. So, we use a condensed version of the access list by classifying

the users into 3 categories:

 Owners: The user who created the file.

 Group: A set of users who are sharing the files.

 Others: All other users in the system.

Here only 3 fields are required to define protection. Each field is a collection of bits each of which

either allows or prevents the access. E.g. The UNIX file system defines 3 fields of 3 bits each: rwx

 r(read access)

 w(write access)

 x(execute access)

Separate fields are kept for file owners, group & other users. So, a bit is needed to record protection

information for each file.

Allocation methods

There are 3 methods of allocating disk space widely used.

1. Contiguous allocation:

a. It requires each file to occupy a set of contiguous blocks on the disk.

b. Number of disk seeks required for accessing contiguously allocated file is minimum.

c. The IBM VM/CMS OS uses contiguous allocation. Contiguous allocation of a file is defined

by the disk address and length (in terms of block units).

d. If the file is ‘n’ blocks long and starts all location ‘b’, then it occupies blocks b, b+1, b+2,----

- -b+ n-1.

e. The directory for each file indicates the address of the starting block and the length of the

area allocated for each file.

f. Contiguous allocation supports both sequential and direct access. For sequential access, the

file system remembers the disk address of the last block referenced and reads the next block

when necessary.

g. For direct access to block i of a file that starts at block b we can immediately access block b

+ i.

h. Problems: One difficulty with contiguous allocation is finding space for a new file. It also

suffers from the problem of external fragmentation. As files are deleted and allocated, the

free disk space is broken into small pieces. A major problem in contiguous allocation is how

much space is needed for a file. When a file is created, the total amount of space it will need

must be found and allocated. Even if the total amount of space needed for a file is known in

advances, pre-allocation is inefficient. Because a file that grows very slowly must be allocated

enough space for its final size even though most of that space is left unused for a long

period time. Therefore, the file has a large amount of internal fragmentation.

2. Linked Allocation:

a. Linked allocation solves all problems of contiguous allocation.

b. In linked allocation, each file is linked list of disk blocks, which are scattered throughout the

disk.

c. The directory contains a pointer to the first and last blocks of the file.

d. Each block contains a pointer to the next block.

e. These pointers are not accessible to the user. To create a new file, we simply create a new

entry in the directory.

f. For writing to the file, a free block is found by the free space management system and this

new block is written to & linked to the end of the file.

g. To read a file, we read blocks by following the pointers from block to block.

h. There is no external fragmentation with linked allocation & any free block can be used to

satisfy a request.

i. Also there is no need to declare the size of a file when that file is created. A file can continue

to grow as long as there are free blocks.

j. Limitations: It can be used effectively only for sequential access files. To find the ‘ i ' th

block of the file, we must start at the beginning of that file and follow the pointers until we

get the ith block. So it is inefficient to support direct access files. Due to the presence of

pointers each file requires slightly more space than before. Another problem is reliability.

Since the files are linked together by pointers scattered throughout the disk. What would

happen if a pointer were lost or damaged.

3. Indexed Allocation:

a. Indexed allocation solves the problem of linked allocation by bringing all the pointers

together to one location known as the index block.

b. Each file has its own index block which is an array of disk block addresses. The ith entry in

the index block points to the ith block of the file.

c. The directory contains the address of the index block. The read the ith block, we use the

pointer in the ith index block entry and read the desired block.

d. To write into the ith block, a free block is obtained from the free space manager and its

address is put in the ith index block entry.

e. Indexed allocation supports direct access without suffering external fragmentation.

f. Limitations: The pointer overhead of index block is greater than the pointer overhead of

linked allocation. So here more space is wasted than linked allocation. In indexed allocation,

an entire index block must be allocated, even if most of the pointers are nil.

Free Space Management

Since there is only a limited amount of disk space, it is necessary to reuse the space from the deleted

files. To keep track of free disk space, the system maintains a free space list. It records all the disk

blocks that are free i.e. not allocated to some file or dictionary. To create a file, we search the free

space list for the required amount of space and allocate it to the new file. This space is then removed

from the free space list. When a file is deleted, its disk space is added to the free space list.

Implementation:

There are 4 ways to implement the free space list such as:

 Bit Vector: The free space list is implemented as a bit map or bit vector. Each block is

represented as 1 bit. If the block is free, the bit is 1 and if it is allocated then the bit is 0. For

example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26 & 27 are free

and rest of the blocks are allocated. The free space bit map would be

0011110011111100011000000111……………………..

The main advantage of this approach is that it is simple and efficient to find the first free block

or n consecutive free blocks on the disk. But bit vectors are inefficient unless the entire vector is

kept in main memory. It is possible for smaller disks but not for larger ones.

 Linked List: Another approach is to link together all the free disk blocks and keep a pointer to

the first free block. The first free block contains a pointer to the next free block and so on. For

example, we keep a pointer to block 2 as the free block. Block 2 contains a pointer to block

which points to block 4 which then points to block 5 and so on. But this scheme is not efficient.

To traverse the list, we must read each block which require a lot of I/O time.

 Grouping: In this approach, we store the address of n free blocks in the first free

block. The first n-1 of these blocks is actually free. The last block contains the

address of another n free blocks and so on. Here the addresses of a large number of

free blocks can be found out quickly.

 Counting: Rather than keeping a list of n free disk block addresses, we can keep the

address of the first free block and the number of free contiguous blocks. So here

each entry in the free space list consists of a disk address and a count.

	Memory Management
	Logical Versus Physical Address Space
	Dynamic Loading
	Dynamic Linking
	Swapping
	Contiguous Memory Allocation
	Fragmentation
	Paging
	Implementation of Page Table
	Hit Ratio
	Valid or invalid bit in a page table

	Structure of the Page Table
	Hierarchical Paging:
	Hashed Page Table:
	Inverted Page Table:
	Shared Page:

	Segmentation
	The segment number Segmentation with Paging
	Virtual Memory
	Demand Paging
	Procedure to handle page fault

	Page Replacement
	Page Replacement Algorithm
	Optimal algorithm
	FIFO algorithm
	LFU algorithm (page-based)
	LFU algorithm (frame-based)
	LRU algorithm

	Thrashing
	FILE SYSTEM
	File concept:
	Operation on a directory:

	Protection
	Allocation methods
	1. Contiguous allocation:
	2. Linked Allocation:
	3. Indexed Allocation:

	Free Space Management
	Implementation:

