

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND DESIGN

COURSE NAME: 19MC003 ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE

III YEAR / VI SEMESTER

Unit V- Traditional Knowledge in Different Sectors

Topic 1: Traditional knowledge and engineering

Introduction

Definition of Traditional Knowledge

- Passed down through generations
- •Deeply connected to culture, environment, and community

Definition of Engineering

- •Application of science and technology to solve practical problems
- •Focus on innovation and development

Key Concepts

Traditional Knowledge:

- •Agriculture, medicine, architecture, water management, etc.
- Contextual and holistic approach

Engineering:

- •Technological and systematic approach
- •Aimed at solving complex, large-scale problems

Intersection of Traditional Knowledge and Engineering

Sustainable Design and Construction

- •Use of natural materials (e.g., mud, stone, bamboo)
- Eco-friendly and energy-efficient methods

Environmental Stewardship

- •Traditional ecological knowledge (e.g., sustainable farming practices)
- •Contribution to modern environmental management

Resilient Infrastructure

- •Earthquake-resistant techniques (e.g., Japanese homes)
- Flood-resistant homes in Southeast Asia

Water and Waste Management

- Rainwater harvesting and terracing
- Eco-friendly waste disposal and composting techniques

Examples of Integration

Bamboo Engineering

- Lightweight, strong, and sustainable material
- •Used in modern construction due to its growth cycle and strength-toweight ratio

Traditional Earthquake-Resilient Homes in Nepal

•Study of indigenous techniques for modern earthquake-resistant architecture

Greenhouse Effect and Passive Cooling

•Traditional designs of greenhouses adapted to modern, energy-efficient structures

Challenges in Integration

Intellectual Property

- •Ensuring the proper recognition of indigenous knowledge Cultural Sensitivity
- •Respecting cultural contexts when using traditional knowledge

Technological Disparities

•Overcoming gaps between low-tech traditional methods and high-tech engineering solutions

Benefits of Integration

Sustainability

- •Eco-friendly, low-impact designs that honor the environment Resilience
- •Designing systems and structures that are more durable in the face of natural disasters

Holistic Solutions

•Addressing global challenges with both modern technology and traditional wisdom

Case Study: Sustainable Architecture

Example: Traditional mud and stone homes

- •Focus on passive solar design, natural cooling, and insulating properties Engineering Adaptation:
- •Modern techniques enhancing the structural stability and energy efficiency of these designs

Any Query????

Thank you.....