
 SNS COLLEGE OF ENGINEERING

Kurumbapalayam (po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Unit 3

DESIGN PROCESS

The software design process is the stage where the requirements for a software

system are turned into a detailed plan, often referred to as a "blueprint" for building

the system. This process is iterative, meaning it repeats over time, with each

iteration refining and improving the design based on feedback and new insights. The

goal is to ensure that the final software meets all the needs of the users, stakeholders,

and technical requirements.

Key Goals of a Good Design

A good software design must follow certain guidelines to ensure the software is of

high quality and can be effectively developed and maintained:

1. Meeting All Requirements:

o The design must cover both explicit and implicit requirements.

Explicit requirements are clear, written needs (like "The system must

allow users to log in"). Implicit requirements might be things like

performance or security that aren't always explicitly stated but are

assumed by stakeholders.

2. Readability and Understandability:

o The design should be clear and easy to understand for everyone

involved in the project—developers who will code the system, testers

who will check for bugs, and support teams who will help maintain it

later.

3. Complete Picture of the System:

o The design should provide a full view of the system, covering data

(how data is stored and used), functionality (what the software does),

and behavior (how the system reacts to different inputs or conditions).

This gives a comprehensive understanding of how everything works.

Quality Guidelines for Good Design

Good software design also follows some quality guidelines to ensure it is efficient,

scalable, and easy to maintain:

1. Architecture:

o The software’s architecture should use recognized patterns or styles

that are proven to work.

o The components of the design should be well thought-out and fit

together in a way that makes it easy to implement and test.

2. Modularity:

o The design should divide the software into smaller, logical parts

(modules or subsystems) that can be developed, tested, and maintained

independently.

3. Clear Representation:

o The design should clearly separate data, architecture, interfaces, and

components, making it easy to understand how each part of the system

fits together.

4. Data Structures:

o The design should include appropriate data structures (e.g., arrays,

lists, trees) that match the needs of the system and follow standard

patterns that are well understood.

5. Independent Components:

o Each component of the system should have independent

functionality, meaning they can work on their own without relying too

heavily on others.

6. Simplified Interfaces:

o The design should create simple interfaces that reduce complexity,

making it easier to connect different parts of the system and integrate

with external systems.

7. Repeatable Process:

o The design process should be repeatable, meaning that it follows a

consistent method, informed by the requirements analysis, to ensure the

software is built in a structured and predictable way.

8. Effective Communication:

o The design should be documented using notations and diagrams (like

UML) that clearly communicate the system’s structure, behavior, and

interactions to all stakeholders.

Quality Attributes (FURPS)

The FURPS acronym stands for five key quality attributes that software design

should aim to achieve. These are essential targets for designing high-quality

software:

1. Functionality:

o Focuses on whether the software has all the features it needs. Is the

system secure, and does it deliver the right functions as expected?

o Example: A banking app that allows users to check balances, make

transfers, and secure logins.

2. Usability:

o Measures how user-friendly and intuitive the software is. Is it easy for

people to use, and does it look good? Does it have good documentation?

o Example: An online shopping website that is easy to navigate and

understand, with clear instructions and helpful support.

3. Reliability:

o Measures how often the software fails and how predictable and

accurate it is. Can it recover from failures, and is the software

dependable?

o Example: A flight booking system that rarely crashes, provides correct

booking information, and can handle failures gracefully (like offering

retries or fixes when things go wrong).

4. Performance:

o Refers to how fast the software works, how efficiently it uses resources

(like memory or CPU), and how it handles large volumes of users or

data.

o Example: A social media platform that loads images and posts quickly

even when many users are active at the same time.

5. Supportability:

o Describes how easy it is to maintain, update, and fix the software. This

includes extensibility (can we add new features?), testability (how

easy it is to test), and compatibility (can the software work on different

systems or devices?).

o Example: A content management system (CMS) that allows new

features to be added easily and integrates well with different web

platforms.

Consideration of Quality Attributes During Design

It’s important to keep these quality attributes in mind from the very beginning of

the design process, not after the software is built. Different projects may prioritize

different attributes, such as:

 An application may focus on functionality and security.

 A game might emphasize performance and responsiveness.

 A medical system might focus heavily on reliability to ensure data accuracy

and uptime.

By considering these quality attributes early, you ensure that the software meets the

stakeholders’ needs and performs well across all aspects.

