
 SNS COLLEGE OF ENGINEERING

Kurumbapalayam (po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Unit 3

Introduction to Software Design

Software design is a process that translates the requirements of a system into a

detailed plan or blueprint for building the software. This blueprint helps developers

understand how the system should be structured and how all parts of the software

will work together.

Key points to remember:

1. Software Design is important: It involves applying principles, concepts, and

best practices to ensure the software is of high quality. A good design is

essential for building reliable, efficient, and maintainable software.

2. Design Models: The design process creates a model of the software, which

includes details about architecture, data structure, interfaces, and

components. These models guide the development team in creating the actual

software.

3. Technical Core: Software design is a fundamental part of software

engineering and is important no matter which development process or

methodology is being used.

4. Design Follows Requirement Analysis: After the requirements of the

software have been gathered and analyzed, design comes next. It is the final

step before actual construction (coding and testing) begins.

Four Key Design Models for a Complete Software Design

When creating a software system, you need to address four important types of design

models to ensure the system works correctly and efficiently. These models help turn

the requirement analysis into a full design ready for development.

1. Data/Class Design

 What it is: This model focuses on how data is organized and how different

classes (objects) are structured within the system. It converts the class models

into real implementations.

 How it works: The CRC (Class Responsibility Collaborator) diagram helps

define what each class will do, what data it holds, and how it interacts with

other classes. This is the basis for defining the actual data structures and

attributes in the design.

 Example: For a banking system, a class might be Account which contains

attributes like balance and methods like deposit() or withdraw().

2. Architectural Design

 What it is: This design model defines the high-level structure of the

software. It describes how the major components of the system interact with

each other and how the system will be structured overall.

 How it works: The architectural design includes the choice of design

patterns (e.g., Model-View-Controller) and ensures that all parts of the

system fit together. It also takes into account the constraints on the system,

such as performance or security.

 Example: In a web application, the architectural design might include a

client-server model where the client sends requests to a server, which

processes the data and sends back the response.

3. Interface Design

 What it is: Interface design defines how different parts of the system will

communicate with each other and with users.

 How it works: It focuses on how information flows between the system’s

components or with external systems. The interface should be easy for users

to understand and interact with.

 Example: The login page of a web app is an interface between the user and

the system. It defines how users will input their credentials and how the

system will respond with feedback (success or error).

4. Component-Level Design

 What it is: This model focuses on the detailed design of each software

component (i.e., the individual units that perform specific tasks).

 How it works: The component-level design takes the higher-level

architectural design and breaks it down into procedural descriptions for each

component. It also involves defining how each component will behave, based

on the class models and flow models.

 Example: For the Account class mentioned earlier, the component-level

design might specify the withdraw() method in detail: what steps are

involved, how to check if there’s enough balance, and how to update the

account’s balance.

To summarize, the design process in software engineering is about creating a

detailed plan for building the software system. This plan is divided into four main

models:

1. Data/Class Design: Organizing data and defining how classes work together.

2. Architectural Design: Structuring the system and defining how components

interact.

3. Interface Design: Designing how the system communicates with users and

other systems.

4. Component-Level Design: Detailing each individual component's

functionality.

Each of these models helps guide the development process and ensures that the final

product is well-structured, easy to understand, and able to meet the required

functionality and quality standards.

