
 SNS COLLEGE OF ENGINEERING

Kurumbapalayam (po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Unit 3

Functional Independence in Object-Oriented Software Engineering

Definition

Functional Independence refers to designing software components (classes,

modules, or functions) in a way that they have minimal dependencies on each other.

This makes the system easier to maintain, test, and scale.

Key Principles of Functional Independence

Functional independence is achieved through two key properties:

1. High Cohesion – A module should focus on a single task.

2. Low Coupling – A module should have minimal dependence on other

modules.

Importance of Functional Independence

 Enhances Reusability – Independent modules can be reused in different parts

of the application.

 Improves Maintainability – Changes in one module do not significantly

impact others.

 Simplifies Testing – Independent modules can be tested separately.

 Boosts Scalability – New functionalities can be added without affecting

existing components.

Example of Functional Independence

Scenario: Library Management System

Imagine a Library Management System with the following modules:

1. User Management Module – Handles user registration and authentication.

2. Book Catalog Module – Manages book details (title, author, availability).

3. Borrowing System Module – Handles book borrowing and returning.

With Functional Independence:

 The User Management Module does not depend on the Book Catalog

Module to function.

 The Borrowing System Module interacts with both but is not tightly linked

to their internal implementations.

 Changes in Book Catalog (e.g., adding a new book category) do not affect

User Management.

Thus, each module operates independently, following high cohesion (each module

has a specific responsibility) and low coupling (minimal dependency between

modules).

Design Patterns in Object-Oriented Software Engineering

1. Introduction to Design Patterns

Design patterns are reusable solutions to common problems that occur in software

design. Instead of solving problems from scratch, developers can use these templates

to create efficient, maintainable, and scalable software.

Why Use Design Patterns?

 Reusability – Reduces redundancy in code.

 Maintainability – Makes code easier to modify and updates

 Scalability – Allows adding new features without major changes.

 Best Practices – Follows industry-standard approaches.

2. Categories of Design Patterns

Design patterns are broadly classified into three main categories:

(A) Creational Design Patterns – Focus on object creation in a flexible and

reusable way.

 Example Patterns: Singleton, Factory Method, Builder

 Use Case: When object creation is complex or needs controlled access.

(B) Structural Design Patterns – Focus on object composition and relationships.

 Example Patterns: Adapter, Composite, Decorator

 Use Case: When objects need to work together efficiently despite interface

differences.

(C) Behavioral Design Patterns – Focus on object interaction and

communication.

 Example Patterns: Observer, Strategy, Command

 Use Case: When objects need to communicate dynamically.

3. Common Design Patterns (With Detailed Examples)

(A) Singleton Pattern (Creational)

Purpose:

 Ensures that only one instance of a class is created.

 Provides a global access point to that instance.

Example Scenario:
Imagine a National Identity Database that stores all citizen records.

 There should be only one central database instance.

 If multiple instances exist, it could cause data inconsistency.

Real-Life Analogy:

 A president of a country – there is only one leader at a time.

 A printer spooler – only one instance manages printing jobs to avoid

conflicts.

(B) Factory Method Pattern (Creational)

Purpose:

 Provides an interface for creating objects, but lets subclasses decide which

class to instantiate.

 Promotes loose coupling (object creation logic is separated).

Example Scenario:
Imagine a Shape Factory that creates different shapes (Circle, Rectangle, Square).

 Instead of manually creating objects, we call the factory, and it decides which

shape to return.

Real-Life Analogy:

 A car factory – you place an order for a car model, and the factory produces

it without you building it manually.

 A restaurant menu – you order a dish, and the kitchen prepares the correct

meal based on your request.

(C) Adapter Pattern (Structural)

Purpose:

 Allows two incompatible interfaces to work together.

 Acts as a bridge between systems that otherwise couldn’t communicate.

Example Scenario:

A USB-to-HDMI Adapter allows a USB device to connect to an HDMI port,

even though their interfaces are different.

Real-Life Analogy:

 A language translator – a person who speaks English and Chinese can help

two people communicate even if they don’t speak the same language.

 A power socket adapter – lets you use an American plug in a European

socket.

(D) Observer Pattern (Behavioral)

Purpose:

 Defines a dependency between objects so that when one object changes, all

dependent objects are notified automatically.

 Used in event-driven applications where multiple objects need to react to state

changes.

Example Scenario:
A news website allows users to subscribe to updates.

 When a new article is published, all subscribers receive a notification

automatically.

Real-Life Analogy:

 A YouTube subscription – when a YouTuber uploads a new video, all

subscribers get notified.

 A fire alarm system – when smoke is detected, all alarms in the building

go off simultaneously.

4. Choosing the Right Design Pattern-Design Patterns use when with example

Design Pattern Use When Example

Singleton You need only one instance

of a class
Database connection,

Printer spooler

Factory Method Object creation needs to be

controlled

Car factory, Restaurant

order system

Adapter Two incompatible interfaces

need to work together
Power adapter, Language

translator

Observer One object’s change needs to

notify multiple objects

YouTube subscriptions,

Fire alarm system

