
1/X

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution
Accredited by NAAC – UGC with ‘A’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23CSB101

OBJECT ORIENTED PROGRAMMING

PACKAGES

By
M.Kanchana

Assistant Professor/CSE

* INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Access Specifiers

* 2/13

Access specifiers are used to specify the visibility and accessibility of a

class constructors, member variables and methods.

Types:

1. Public

2. Private

3. Protected

4. Default (package)

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Access Specifiers

* 3/13

Public (anything declared as public can be accessed from

anywhere):

A variable or method declared/defined with the public modifier can be

accessed anywhere in the program through its class objects, through its

subclass objects and through the objects of classes of other packages

also.

Private (anything declared as private can’t be seen outside of the

class):

The instance variable or instance methods declared/initialized as private

can be accessed only by its class. Even its subclass is not able to access

the private members.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Access Specifiers

* 4/13

Protected (anything declared as protected can be accessed by

classes in the same package and subclasses in the other packages):

The protected access specifier makes the instance variables and instance

methods visible to all the classes, subclasses of that package and

subclasses of other packages.

Default (can be accessed only by the classes in the same package):

The default access modifier is friendly. This is similar to public

modifier except only the classes belonging to a particular package

knows the variables and methods.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Access Specifiers

* 5/13

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Packages and Access Specifiers

* 6/13

Creating Own Package

• Choose a package name (e.g., mypackage1).

• Add the package keyword at the top of the Java file.

• Save the file inside a folder with the same name as the package.

package packagename;

package mypackage1;

public class FirstClass {

public String i = "I am public variable";

protected String j = "I am protected variable";

private String k = "I am private variable";

String r = "I don't have any modifier";

}

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Packages and Access Specifiers

* 7/13

Compilation Command:

javac -d . mypackage1\FirstClass.java

-d . → Saves the compiled .class file inside the package directory mypackage1.

D:\JAVA Programs\

├── mypackage1\

│ ├── FirstClass.class

.

Run:

java mypackage1.FirstClass

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Packages and Access Specifiers

* 8/13

package mypackage2;

import mypackage1.FirstClass;

class SecondClass extends FirstClass

{

void method() {

System.out.println(i);

System.out.println(j);

System.out.println(k);

System.out.println(r);

}public static void main(String arg[]) {

SecondClass obj = new SecondClass();

obj.method();

}

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Packages and Access Specifiers

* 9/13

if SecondClass.java depends on FirstClass.java, so we need to set the classpath

(cp)

javac -d . -cp . mypackage2\SecondClass.java

-cp . tells Java to look in the current directory (.) for other compiled

classes

D:\JAVA Programs\

├── mypackage1\

│ ├── FirstClass.class

├── mypackage2\

│ ├── SecondClass.class

.

Run:

java mypackage2.SecondClass

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Packages and Access Specifiers

* 10/13

if SecondClass.java depends on FirstClass.java, so we need to set the classpath

(cp)

javac -d . -cp . mypackage2\SecondClass.java

-cp . tells Java to look in the current directory (.) for other compiled

classes

D:\JAVA Programs\

├── mypackage1\

│ ├── FirstClass.class

├── mypackage2\

│ ├── SecondClass.class

.

Run:

java mypackage2.SecondClass

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Packages and Access Specifiers

* 11/13

.

mypackage2\SecondClass.java:7: error: k has private access in FirstClass

System.out.println(k);

mypackage2\SecondClass.java:8: error: r is not public in FirstClass; cannot be

accessed from outside package

System.out.println(r);

* INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE 12/13

THANK YOU

