
UNIT III

MEMORY MANAGEMENT

MEMORY MANAGEMENT

Memory management
strategies
• Background

• Swapping

• Contiguous Memory Allocation

• Segmentation

• Paging

• Structure of Page Table

Virtual Memory Management
• Background

• Demand paging

• Copy on write

• Page replacement algorithms

• Allocation of frames

• Thrashing.

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Segmentation

• Memory-management scheme that supports user view of memory

• A program is a collection of segments

• A segment is a logical unit such as:

 main program

 procedure

 function

 method

 object

 local variables, global variables

 common block

 stack

 symbol table

 arraysDr.B.Anuradha / ASP / CSD/ SEM 4 / OS

User’s View of a Program

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Logical View of
Segmentation

1

3

2

4

1

4

2

3

user space

physical memory space

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Segmentation Architecture

• Logical address consists of a two tuple:

 <segment-number, offset>,

• Segment table – maps two-dimensional physical addresses; each table entry
has:

• base – contains the starting physical address where the segments reside in
memory

• limit – specifies the length of the segment

• Segment-table base register (STBR) points to the segment table’s location in
memory

• Segment-table length register (STLR) indicates number of segments used by
a program;

 segment number s is legal if s < STLR

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Segmentation Architecture
(Cont.)

• Protection

• With each entry in segment table associate:

• validation bit = 0  illegal segment

• read/write/execute privileges

• Protection bits associated with segments; code sharing occurs at

segment level

• Since segments vary in length, memory allocation is a dynamic

storage-allocation problem

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Segmentation Hardware

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Paging

• Physical address space of a process can be noncontiguous; process is allocated
physical memory whenever the latter is available

• Avoids external fragmentation

• Avoids problem of varying sized memory chunks

• Divide physical memory into fixed-sized blocks called frames

• Size is power of 2, between 512 bytes and 16 Mbytes

• Divide logical memory into blocks of same size called pages

• Keep track of all free frames

• To run a program of size N pages, need to find N free frames and load program

• Set up a page table to translate logical to physical addresses

• Backing store likewise split into pages

• Still have Internal fragmentation

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Address Translation Scheme

• Address generated by CPU is divided into:

• Page number (p) – used as an index into a page table which contains

base address of each page in physical memory

• Page offset (d) – combined with base address to define the physical

memory address that is sent to the memory unit

• For given logical address space 2m and page size 2n

page number page offset

p d

m -n n

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Paging Hardware

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Paging Model of Logical
 and Physical Memory

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Paging Example

n=2 and m=4 32-byte memory and 4-byte pages

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Paging (Cont.)

• Calculating internal fragmentation

• Page size = 2,048 bytes , Process size = 72,766 bytes

• 35 pages + 1,086 bytes

• Internal fragmentation of 2,048 - 1,086 = 962 bytes

• Worst case fragmentation = 1 frame – 1 byte

• On average fragmentation = 1 / 2 frame size

• But each page table entry takes memory to track

• Page sizes growing over time

• Solaris supports two page sizes – 8 KB and 4 MB

• Process view and physical memory now very different

• By implementation process can only access its own memory

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Free Frames

Before allocation After allocation

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Implementation of Page Table

• Page table is kept in main memory

• Page-table base register (PTBR) points to the page table

• Page-table length register (PTLR) indicates size of the page table

• In this scheme every data/instruction access requires two memory accesses

• One for the page table and one for the data / instruction

• The two memory access problem can be solved by the use of a special fast-

lookup hardware cache called associative memory or translation look-aside

buffers (TLBs)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Implementation of Page Table (Cont.)

• Some TLBs store address-space identifiers (ASIDs) in each TLB entry –

uniquely identifies each process to provide address-space protection for that

process

• Otherwise need to flush at every context switch

• TLBs typically small (64 to 1,024 entries)

• On a TLB miss, value is loaded into the TLB for faster access next time

• Replacement policies must be considered

• Some entries can be wired down for permanent fast access

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Associative Memory

• Associative memory – parallel search

• Address translation (p, d)

• If p is in associative register, get frame # out

• Otherwise get frame # from page table in memory

Page # Frame #

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Paging Hardware With TLB

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Effective Access Time

• Associative Lookup =  time unit

• Can be < 10% of memory access time

• Hit ratio = 

• Hit ratio – percentage of times that a page number is found in the associative registers;
ratio related to number of associative registers

• Consider  = 80%,  = 20ns for TLB search, 100ns for memory access

• Effective Access Time (EAT)

 EAT = (1 + )  + (2 + )(1 – )

 = 2 +  – 

• Consider  = 80%,  = 20ns for TLB search, 100ns for memory access

• EAT = 0.80 x 100 + 0.20 x 200 = 120ns

• Consider more realistic hit ratio ->  = 99%,  = 20ns for TLB search, 100ns for memory
access

• EAT = 0.99 x 100 + 0.01 x 200 = 101ns
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Memory Protection

• Memory protection implemented by associating protection bit with each frame to

indicate if read-only or read-write access is allowed

• Can also add more bits to indicate page execute-only, and so on

• Valid-invalid bit attached to each entry in the page table:

• “valid” indicates that the associated page is in the process’ logical address

space, and is thus a legal page

• “invalid” indicates that the page is not in the process’ logical address space

• Or use page-table length register (PTLR)

• Any violations result in a trap to the kernel

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Valid (v) or Invalid (i) Bit In A Page Table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Shared Pages

• Shared code

• One copy of read-only (reentrant) code shared among processes (i.e., text

editors, compilers, window systems)

• Similar to multiple threads sharing the same process space

• Also useful for interprocess communication if sharing of read-write pages

is allowed

• Private code and data

• Each process keeps a separate copy of the code and data

• The pages for the private code and data can appear anywhere in the logical
address space

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Shared Pages Example

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Structure of the Page Table

• Memory structures for paging can get huge using straight-forward methods

• Consider a 32-bit logical address space as on modern computers

• Page size of 4 KB (212)

• Page table would have 1 million entries (232 / 212)

• If each entry is 4 bytes -> 4 MB of physical address space / memory for
page table alone

• That amount of memory used to cost a lot

• Don’t want to allocate that contiguously in main memory

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Hierarchical Page Tables

• Break up the logical address space into multiple

page tables

• A simple technique is a two-level page table

• We then page the page table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Two-Level Page-Table Scheme

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Two-Level Paging Example

• A logical address (on 32-bit machine with 1K page size) is divided into:

• a page number consisting of 22 bits

• a page offset consisting of 10 bits

• Since the page table is paged, the page number is further divided into:

• a 12-bit page number

• a 10-bit page offset

• Thus, a logical address is as follows:

where p1 is an index into the outer page table, and p2 is the displacement within

the page of the inner page table

• Known as forward-mapped page table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Address-Translation Scheme

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

64-bit Logical Address Space

• Even two-level paging scheme not sufficient

• If page size is 4 KB (212)

• Then page table has 252 entries

• If two level scheme, inner page tables could be 210 4-byte entries

• Address would look like

• Outer page table has 242 entries or 244 bytes

• One solution is to add a 2nd outer page table

• But in the following example the 2nd outer page table is still 234 bytes in size

• And possibly 4 memory access to get to one physical memory location

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Three-level Paging Scheme

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Hashed Page Tables

• Common in address spaces > 32 bits

• The virtual page number is hashed into a page table

• This page table contains a chain of elements hashing to the same location

• Each element contains

 (1) the virtual page number

 (2) the value of the mapped page frame

 (3) a pointer to the next element

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Hashed Page Tables

• Virtual page numbers are compared in this chain searching for a match

• If a match is found, the corresponding physical frame is extracted

• Variation for 64-bit addresses is clustered page tables

• Similar to hashed but each entry refers to several pages (such as 16) rather than 1

• Especially useful for sparse address spaces (where memory references are non-

contiguous and scattered)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Hashed Page Table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Inverted Page Table

• Rather than each process having a page table and keeping track of all possible

logical pages, track all physical pages

• One entry for each real page of memory

• Entry consists of the virtual address of the page stored in that real memory

location, with information about the process that owns that page

• Decreases memory needed to store each page table, but increases time needed

to search the table when a page reference occurs

• Use hash table to limit the search to one — or at most a few — page-table entries

• TLB can accelerate access

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Inverted Page Table Architecture

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

	Slide 1: Unit iII MEMORY MANAGEMENT
	Slide 2: MEMORY MANAGEMENT
	Slide 3: Segmentation
	Slide 4: User’s View of a Program
	Slide 5: Logical View of Segmentation
	Slide 6: Segmentation Architecture
	Slide 7: Segmentation Architecture (Cont.)
	Slide 8: Segmentation Hardware
	Slide 9: Paging
	Slide 10: Address Translation Scheme
	Slide 11: Paging Hardware
	Slide 12: Paging Model of Logical and Physical Memory
	Slide 13: Paging Example
	Slide 14: Paging (Cont.)
	Slide 15: Free Frames
	Slide 16: Implementation of Page Table
	Slide 17: Implementation of Page Table (Cont.)
	Slide 18: Associative Memory
	Slide 19: Paging Hardware With TLB
	Slide 20: Effective Access Time
	Slide 21: Memory Protection
	Slide 22: Valid (v) or Invalid (i) Bit In A Page Table
	Slide 23: Shared Pages
	Slide 24: Shared Pages Example
	Slide 25: Structure of the Page Table
	Slide 26: Hierarchical Page Tables
	Slide 27: Two-Level Page-Table Scheme
	Slide 28: Two-Level Paging Example
	Slide 29: Address-Translation Scheme
	Slide 30: 64-bit Logical Address Space
	Slide 31: Three-level Paging Scheme
	Slide 32: Hashed Page Tables
	Slide 33: Hashed Page Tables
	Slide 34: Hashed Page Table
	Slide 35: Inverted Page Table
	Slide 36: Inverted Page Table Architecture

