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Memory management  Virtual Memory Management

strategies - Background
* Background * Demand paging
* Swapping * Copy on write

* Contiguous Memory Allocation Page replacement algorithms

* Segmentation Allocation of frames

* Paging Thrashing.

* Structure of Page Table
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<2145 Saaals

* Memory-management scheme that supports user view of memory

* A program is a collection of segments
» A segment is a logical unit such as:

main program

procedure

function

method

object

local variables, global variables
common block

stack

symbol table
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Jser’s View of a Program "
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g Lo cal View of TN

Segmentation

user space

physical memory space
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Segmentation Architecture

* Logical address consists of a two tuple:
<segment-number, offset>,

* Segment table - maps two-dimensional physical addresses; each table entry
has:

* base - contains the starting physical address where the segments reside in
memory

* limit - specifies the length of the segment

* Segment-table base register (STBR) points to the segment table’s location in
memory

* Segment-table length register (STLR) indicates number of segments used by
a program;

segment number s is legal if s < STLR
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(Cont.)

 Protection

* With each entry in segment table associate:
* validation bit = 0 = illegal segment

* read/write/execute privileges

* Protection bits associated with segments; code sharing occurs at

segment level

* Since segments vary in length, memory allocation is a dynamic

storage-allocation problem
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Segmentation Hardware
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* Physical address space of a process can be noncontiguous; process is allocated
physical memory whenever the latter is available

 Avoids external fragmentation
* Avoids problem of varying sized memory chunks

Divide physical memory into fixed-sized blocks called frames
* Size is power of 2, between 512 bytes and 16 Mbytes

Divide logical memory into blocks of same size called pages

Keep track of all free frames

To run a program of size N pages, need to find N free frames and load program

Set up a page table to translate logical to physical addresses

Backing store likewise split into pages

» Still have Internal fragmentation
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* Page number (p) - used as an index into a page table which contains

« Address generated by CPU is divided into:

base address of each page in physical memory

* Page offset (d) - combined with base address to define the physical

memory address that is sent to the memory unit

* For given logical address space 2™ and page size 2"
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vaging Moel of Logical \

and Physical Memory
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Paging Example N
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n=2 and m=4 32-byte memory and 4-byte pages
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Paging (Cont.) N

* Calculating internal fragmentation
* Page size = 2,048 bytes , Process size = 72,766 bytes

« 35 pages + 1,086 bytes

Internal fragmentation of 2,048 - 1,086 = 962 bytes

Worst case fragmentation = 1 frame - 1 byte

On average fragmentation = 1 / 2 frame size

But each page table entry takes memory to track

Page sizes growing over time
* Solaris supports two page sizes - 8 KB and 4 MB

* Process view and physical memory now very different

* By implementation process can only access its own memory
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Free Frames \

INSIHTUTIONS,
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Page table is kept in main memory

Page-table base register (PTBR) points to the page table

Page-table length register (PTLR) indicates size of the page table

In this scheme every data/instruction access requires two memory accesses

* One for the page table and one for the data / instruction

The two memory access problem can be solved by the use of a special fast-
lookup hardware cache called associative memory or translation look-aside

buffers (TLBs)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S



* Some TLBs store address-space identifiers (ASIDs) in each TLB entry -
uniquely identifies each process to provide address-space protection for that

process

* Otherwise need to flush at every context switch
* TLBs typically small (64 to 1,024 entries)

 On a TLB miss, value is loaded into the TLB for faster access next time
* Replacement policies must be considered

e Some entries can be wired down for permanent fast access
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Associative Memory .

» Associative memory - parallel search
Page # Frame #

* Address translation (p, d)
 If pisin associative register, get frame # out

* Otherwise get frame # from page table in memory
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Paging Hardware With TLB
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Effective Access Time \

* Associative Lookup = € time unit
* Can be < 10% of memory access time

Hit ratio = o

« Hit ratio - percentage of times that a page number is found in the associative registers;
ratio related to number of associative registers

Consider o = 80%, € = 20ns for TLB search, 100ns for memory access
Effective Access Time (EAT)
EAT=(1+¢)Ja+(2+¢)(1-a)

=2+¢e-a

Consider a = 80%, € = 20ns for TLB search, 100ns for memory access

e« EAT=0.80x100+0.20x200=120ns
Consider more realistic hit ratio -> o = 99%, € = 20ns for TLB search, 100ns for memory
access

e« EAT=0.99x100+0.01x200=101ns
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Memory Protection !

* Memory protection implemented by associating protection bit with each frame to

indicate if read-only or read-write access is allowed

* Can also add more bits to indicate page execute-only, and so on

 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the process’ logical address

space, and is thus a legal page
* “invalid” indicates that the page is not in the process’ logical address space

* Or use page-table length register (PTLR)

* Any violations result in a trap to the kernel
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Shaed Pages

* One copy of read-only (reentrant) code shared among processes (i.e., text

editors, compilers, window systems)
 Similar to multiple threads sharing the same process space
 Also useful for interprocess communication if sharing of read-write pages
is allowed
* Private code and data

* Each process keeps a separate copy of the code and data

* The pages for the private code and data can appear anywhere in the logical
address space

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S



INSIHTUTIONS,
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Structure of the Page Table

* Memory structures for paging can get huge using straight-forward methods
* Consider a 32-bit logical address space as on modern computers

 Page size of 4 KB (21?)

* Page table would have 1 million entries (232 / 212)

* If each entry is 4 bytes -> 4 MB of physical address space / memory for
page table alone

* That amount of memory used to cost a lot
* Don’t want to allocate that contiguously in main memory

* Hierarchical Paging
* Hashed Page Tables
* Inverted Page Tables
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Hierarchical Page Tables

* Break up the logical address space into multiple

page tables
* A simple technique is a two-level page table

* We then page the page table
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INSITTUTIONS,
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* Alogical address (on 32-bit machine with 1K page size) is divided into:

e a page number consisting of 22 bits
» a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:

* a 12-bit page number
page number page offset

,01 p2 d
* Thus, a logical address is as follows: 19 10 10

* a 10-bit page offset

where p, is an index into the outer page table, and p, is the displacement within

the page of the inner page table

* Known as forward-mapped page table
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Address-Translation Scheme
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b4-bit Logical Address Space

* Even two-level paging scheme not sufficient

* If page size is 4 KB (2'?)
« Then page table has 2°? entries

* If two level scheme, inner page tables could be 2'° 4-byte entries

° Address Would look llke outer page inner page page offset
P P d

42 10 12

« Quter page table has 2** entries or 2* bytes
* One solution is to add a 2™ outer page table
* Butin the following example the 2" outer page table is still 234 bytes in size

* And possibly 4 memory access to get to one physical memory location
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LU Three-level Paging Scheme

outer page inner page offset
P1 P2 d
42 10 12

2nd outer page outer page | inner page & offset

P1 P> Ps d
32 10 10 12
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Hashe’d'age Tables .

 Common in address spaces > 32 bits

* The virtual page number is hashed into a page table

 This page table contains a chain of elements hashing to the same location
* Each element contains
(1) the virtual page number
(2) the value of the mapped page frame

(3) a pointer to the next element

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S



Hashed‘age Tables .

 Virtual page numbers are compared in this chain searching for a match

 If a match is found, the corresponding physical frame is extracted

 Variation for 64-bit addresses is clustered page tables
 Similar to hashed but each entry refers to several pages (such as 16) rather than 1

» Especially useful for sparse address spaces (where memory references are non-

contiguous and scattered)
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Hashed Page Table
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Inverted Page Table

* Rather than each process having a page table and keeping track of all possible

logical pages, track all physical pages
* One entry for each real page of memory

* Entry consists of the virtual address of the page stored in that real memory

location, with information about the process that owns that page

* Decreases memory needed to store each page table, but increases time needed
to search the table when a page reference occurs
* Use hash table to limit the search to one — or at most a few — page-table entries

 TLB can accelerate access
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INSITTUTIONS,

Inverted Page Table Architecture
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