UNIT 11

MEMORY MANAGEMENT

&
CODE g CAL

[UMOCCO

o

1=

Qs o

= 2 &
m‘ E‘t:li

U) RESOURCES O

u

O P E RATI NG ol
COMPC :_--w ¥ SYSTE

N

Memory management Virtual Memory Management

strategies - Background
* Background * Demand paging
* Swapping * Copy on write

* Contiguous Memory Allocation Page replacement algorithms

* Segmentation Allocation of frames

* Paging Thrashing.

* Structure of Page Table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

<2145 Saaals

* Memory-management scheme that supports user view of memory

* A program is a collection of segments
» A segment is a logical unit such as:

main program

procedure

function

method

object

local variables, global variables
common block

stack

symbol table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS arrays

Jser’s View of a Program "

subroutine

symbol
table

Sqrt

main
program

logical address

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

g Lo cal View of TN

Segmentation

user space

physical memory space

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Segmentation Architecture

* Logical address consists of a two tuple:
<segment-number, offset>,

* Segment table - maps two-dimensional physical addresses; each table entry
has:

* base - contains the starting physical address where the segments reside in
memory

* limit - specifies the length of the segment

* Segment-table base register (STBR) points to the segment table’s location in
memory

* Segment-table length register (STLR) indicates number of segments used by
a program;

segment number s is legal if s < STLR

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

(Cont.)

 Protection

* With each entry in segment table associate:
* validation bit = 0 = illegal segment

* read/write/execute privileges

* Protection bits associated with segments; code sharing occurs at

segment level

* Since segments vary in length, memory allocation is a dynamic

storage-allocation problem

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Segmentation Hardware

CPU

oe{

—» S

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

limit |base
segment
table
| d |
no
v
trap: addressing error physical memory

* Physical address space of a process can be noncontiguous; process is allocated
physical memory whenever the latter is available

 Avoids external fragmentation
* Avoids problem of varying sized memory chunks

Divide physical memory into fixed-sized blocks called frames
* Size is power of 2, between 512 bytes and 16 Mbytes

Divide logical memory into blocks of same size called pages

Keep track of all free frames

To run a program of size N pages, need to find N free frames and load program

Set up a page table to translate logical to physical addresses

Backing store likewise split into pages

» Still have Internal fragmentation

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

* Page number (p) - used as an index into a page table which contains

« Address generated by CPU is divided into:

base address of each page in physical memory

* Page offset (d) - combined with base address to define the physical

memory address that is sent to the memory unit

* For given logical address space 2™ and page size 2"

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

page number

page offset

p

d

m -n

n

Address Translation Scheme

Pang Hard.v;/are =

7f
logical physical J
address address fOO00 ... 0000
I !’

cPU —{p [d | |

al

— f

| d | -

> —h

11w e A1

physical
memory

page table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

vaging Moel of Logical \

and Physical Memory

INSTITUTIONS,
frame
number
page O 0]
o 1
page 1 1 5 1| page O
2 |83
page 2 2
3 [BE
page 3 page table 3| page 2
logical 4| page 1
memory
5
6
7| page 3
physical
memory

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Paging Example N

INSIHTUTIONS, ? g 0
2 c
3|d
4 | e 4 i
5 [l j
6 | g o] K
7 | h 16 I
8 2|1 8 m
9| j n
10| k] o
11 |Wl page table p
12| m 12
13| n
14| o
15| p
logical memory 16
20 a
b
c
d
24 | ©
f
g
h
28

physical memory

n=2 and m=4 32-byte memory and 4-byte pages

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Paging (Cont.) N

* Calculating internal fragmentation
* Page size = 2,048 bytes , Process size = 72,766 bytes

« 35 pages + 1,086 bytes

Internal fragmentation of 2,048 - 1,086 = 962 bytes

Worst case fragmentation = 1 frame - 1 byte

On average fragmentation = 1 / 2 frame size

But each page table entry takes memory to track

Page sizes growing over time
* Solaris supports two page sizes - 8 KB and 4 MB

* Process view and physical memory now very different

* By implementation process can only access its own memory

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Free Frames \

INSIHTUTIONS,

free-frame list free-frame list
14 15
13 13 13 |page 1
18
20 14 14 |page O
15
P 15 P T 15
w w
page O 16 page O 16
page 1 page 1
page 2 17 page 2 17
page 3 page 3
new process 18 W 18 |page 2
N
19 o[ia 19
1(13
20 2|18 20 |page 3
3|(20
21 new-process page table 21
(a) (b)
Before allocation After allocation

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Page table is kept in main memory

Page-table base register (PTBR) points to the page table

Page-table length register (PTLR) indicates size of the page table

In this scheme every data/instruction access requires two memory accesses

* One for the page table and one for the data / instruction

The two memory access problem can be solved by the use of a special fast-
lookup hardware cache called associative memory or translation look-aside

buffers (TLBs)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

* Some TLBs store address-space identifiers (ASIDs) in each TLB entry -
uniquely identifies each process to provide address-space protection for that

process

* Otherwise need to flush at every context switch
* TLBs typically small (64 to 1,024 entries)

 On a TLB miss, value is loaded into the TLB for faster access next time
* Replacement policies must be considered

e Some entries can be wired down for permanent fast access

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Associative Memory .

» Associative memory - parallel search
Page # Frame #

* Address translation (p, d)
 If pisin associative register, get frame # out

* Otherwise get frame # from page table in memory

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Paging Hardware With TLB

logical

address
EE B — DN |
page frame
number number
TLB hit physical
l i address
CfrTdt—
TLB
p{
TLB miss
> f
— physical
memory
page table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Effective Access Time \

* Associative Lookup = € time unit
* Can be < 10% of memory access time

Hit ratio = o

« Hit ratio - percentage of times that a page number is found in the associative registers;
ratio related to number of associative registers

Consider o = 80%, € = 20ns for TLB search, 100ns for memory access
Effective Access Time (EAT)
EAT=(1+¢)Ja+(2+¢)(1-a)

=2+¢e-a

Consider a = 80%, € = 20ns for TLB search, 100ns for memory access

e« EAT=0.80x100+0.20x200=120ns
Consider more realistic hit ratio -> o = 99%, € = 20ns for TLB search, 100ns for memory
access

e« EAT=0.99x100+0.01x200=101ns

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Memory Protection !

* Memory protection implemented by associating protection bit with each frame to

indicate if read-only or read-write access is allowed

* Can also add more bits to indicate page execute-only, and so on

 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the process’ logical address

space, and is thus a legal page
* “invalid” indicates that the page is not in the process’ logical address space

* Or use page-table length register (PTLR)

* Any violations result in a trap to the kernel

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

INSIHTUTIONS,

00000

10,468
12,287

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

page O

page 1

page 2

page 3

page 4

page 5

frame number \ / valid—invalid bit

O [FZ231w
1 [ESHIENE
2 [FEV
3 (B
418 | v
5 [ESRIRN
6 [ECHIEI

(6 1 I
page table

page O

page 1

page 2

page 3

page 4

page 5

page n

Shaed Pages

* One copy of read-only (reentrant) code shared among processes (i.e., text

editors, compilers, window systems)
 Similar to multiple threads sharing the same process space
 Also useful for interprocess communication if sharing of read-write pages
is allowed
* Private code and data

* Each process keeps a separate copy of the code and data

* The pages for the private code and data can appear anywhere in the logical
address space

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

INSIHTUTIONS,

ed 1

ed 2

ed 3

data 1

process £,

ed 1

ed 2

ed 3

data 3

process £,

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Sl || w

page table
for P,

N O(d W

page table
for P,

ed 1

ed 2

ed 3

data 2

process £,

N O AW

page table
for P,

10

11

data 1

data 3

ed 1

ed 2

ed 3

data 2

Shared ages Exampl

&

. T '—\

Structure of the Page Table

* Memory structures for paging can get huge using straight-forward methods
* Consider a 32-bit logical address space as on modern computers

 Page size of 4 KB (21?)

* Page table would have 1 million entries (232 / 212)

* If each entry is 4 bytes -> 4 MB of physical address space / memory for
page table alone

* That amount of memory used to cost a lot
* Don’t want to allocate that contiguously in main memory

* Hierarchical Paging
* Hashed Page Tables
* Inverted Page Tables

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Hierarchical Page Tables

* Break up the logical address space into multiple

page tables
* A simple technique is a two-level page table

* We then page the page table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

INSITTUTIONS,

outer page
table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

O
1 #_//T
. 100 2
5(.30 I~
L J / =
100 500
708 |—— .
= 708
9?9 \ 900 o
900 />< :
page of 929
page table
page table °
memory

* Alogical address (on 32-bit machine with 1K page size) is divided into:

e a page number consisting of 22 bits
» a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:

* a 12-bit page number
page number page offset

,01 p2 d
* Thus, a logical address is as follows: 19 10 10

* a 10-bit page offset

where p, is an index into the outer page table, and p, is the displacement within

the page of the inner page table

* Known as forward-mapped page table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

INSIHTUT/IRNS;

Address-Translation Scheme

logical address

P4 P2 d

o

>

P2{

outer page d
table {

page of
page table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

b4-bit Logical Address Space

* Even two-level paging scheme not sufficient

* If page size is 4 KB (2'?)
« Then page table has 2°? entries

* If two level scheme, inner page tables could be 2'° 4-byte entries

° Address Would look llke outer page inner page page offset
P P d

42 10 12

« Quter page table has 2** entries or 2* bytes
* One solution is to add a 2™ outer page table
* Butin the following example the 2" outer page table is still 234 bytes in size

* And possibly 4 memory access to get to one physical memory location

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

P 5 Sxhoni - s - W TR TSRSy
e anepe vy
gt ap e G

LU Three-level Paging Scheme

outer page inner page offset
P1 P2 d
42 10 12

2nd outer page outer page | inner page & offset

P1 P> Ps d
32 10 10 12

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

<2145 Saaals

Hashe’d'age Tables .

 Common in address spaces > 32 bits

* The virtual page number is hashed into a page table

 This page table contains a chain of elements hashing to the same location
* Each element contains
(1) the virtual page number
(2) the value of the mapped page frame

(3) a pointer to the next element

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Hashed‘age Tables .

 Virtual page numbers are compared in this chain searching for a match

 If a match is found, the corresponding physical frame is extracted

 Variation for 64-bit addresses is clustered page tables
 Similar to hashed but each entry refers to several pages (such as 16) rather than 1

» Especially useful for sparse address spaces (where memory references are non-

contiguous and scattered)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Hashed Page Table

physical
logical address J address
P d r d m—

physical
——*IQISIII‘llpIrI_lT“‘ memory

hash table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

T —— '—\

Inverted Page Table

* Rather than each process having a page table and keeping track of all possible

logical pages, track all physical pages
* One entry for each real page of memory

* Entry consists of the virtual address of the page stored in that real memory

location, with information about the process that owns that page

* Decreases memory needed to store each page table, but increases time needed
to search the table when a page reference occurs
* Use hash table to limit the search to one — or at most a few — page-table entries

 TLB can accelerate access

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

INSITTUTIONS,

Inverted Page Table Architecture

logical :
address i pZ)éS|ca|
address -
> = physical
CPU [pid P d |A d > memory

R_(._J

search l

pid

-

page table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

	Slide 1: Unit iII MEMORY MANAGEMENT
	Slide 2: MEMORY MANAGEMENT
	Slide 3: Segmentation
	Slide 4: User’s View of a Program
	Slide 5: Logical View of Segmentation
	Slide 6: Segmentation Architecture
	Slide 7: Segmentation Architecture (Cont.)
	Slide 8: Segmentation Hardware
	Slide 9: Paging
	Slide 10: Address Translation Scheme
	Slide 11: Paging Hardware
	Slide 12: Paging Model of Logical and Physical Memory
	Slide 13: Paging Example
	Slide 14: Paging (Cont.)
	Slide 15: Free Frames
	Slide 16: Implementation of Page Table
	Slide 17: Implementation of Page Table (Cont.)
	Slide 18: Associative Memory
	Slide 19: Paging Hardware With TLB
	Slide 20: Effective Access Time
	Slide 21: Memory Protection
	Slide 22: Valid (v) or Invalid (i) Bit In A Page Table
	Slide 23: Shared Pages
	Slide 24: Shared Pages Example
	Slide 25: Structure of the Page Table
	Slide 26: Hierarchical Page Tables
	Slide 27: Two-Level Page-Table Scheme
	Slide 28: Two-Level Paging Example
	Slide 29: Address-Translation Scheme
	Slide 30: 64-bit Logical Address Space
	Slide 31: Three-level Paging Scheme
	Slide 32: Hashed Page Tables
	Slide 33: Hashed Page Tables
	Slide 34: Hashed Page Table
	Slide 35: Inverted Page Table
	Slide 36: Inverted Page Table Architecture

