UNIT 11

MEMORY MANAGEMENT

&
CODE g CAL

[UMOCCO

o

1=

Qs o

= 2 &
m‘ E‘t:li

U) RESOURCES O

u

O P E RATI NG ol
COMPC :_--w ¥ SYSTE

N

Memory management Virtual Memory Management

strategies - Background
* Background * Demand paging
* Swapping * Copy on write

* Contiguous Memory Allocation Page replacement algorithms

* Segmentation Allocation of frames

* Paging Thrashing.

* Structure of Page Table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Page Replacement

* Prevent over-allocation of memory by modifying page-fault service routine to

include page replacement

* Use modify (dirty) bit to reduce overhead of page transfers — only modified

pages are written to disk

* Page replacement completes separation between logical memory and physical
memory - large virtual memory can be provided on a smaller physical

memory

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

valid—invalid

O H frame bit
1 load M &
oa
PC —» 3 |V
> J 4 |v
5 (a
3 M i
logical memory page table
for user 1 for user 1

valid—invalid

O A frame bit
N

1 B 6 |v

2 D i

2 |v

3 - 7 |V
logical memory page table
for user 2 for user 2

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

~N 0O 0 b WN

monitor

E

physical
memory

- T R R i .
- - — >
- - = - _

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement algorithm to select a victim frame

- Write victim frame to disk if dirty
3. Bring the desired page into the (newly) free frame; update the page and frame tables
4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault - increasing EAT

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

INSIHTUTIONS,

frame valid—invalid bit

Ny ¥
[
f v
page table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

change
to invalid

@

reset page
table for
new page

swap out
victim

victim
@....
desired
page in
physical
memory

N
L.

P3N Page and Frame
PNy Y o el Replacement Algorithms

* How many frames to give each process
* Which frames to replace

* Page-replacement algorithm
* Want lowest page-fault rate on both first access and re-access

 Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string
* String is just page numbers, not full addresses
* Repeated access to the same page does not cause a page fault

* Results depend on number of frames available
* In all our examples, the reference string of referenced page numbers is
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

INSTITUTIONS Graph of Page Faults Versus
The Number of Frames

number of page faults

number of frames

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

3 frames (3 pages can be in memory at a time per process)

reference string

0 1 2 o 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
7| 7] |7] [2] |2] [2] 4] |4] [4] |0 o/ |o
| [o] [o] [o] 3] |3] |3 |2] [2] |2 1] [1] 1] o] |o
O b b [e [of lof [3] (sl 3] [2] 2| [2]| [1]

page frames

15 page faults

Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
* Adding more frames can cause more page faults!
* Belady’s Anomaly

How to track ages of pages?
* Just use a FIFO queue

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

FIFO Illustrating Belady's Anomaly

-
o

number of page faults

N A~ O ®

1 2 3 4 5 6 7
number of frames

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

* Replace page that will not be used for longest period of time
* 9 is optimal for the example

* How do you know this?
 Can’t read the future

* Used for measuring how well your algorithm performs

reference string
f o 1 2 o 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7zl [7] [7] [2 o] 2 o 2 =
ol o] o 0 4 0 0 0
HRERE 3 3 B : 1

page frames

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

* Use past knowledge rather than future

* Replace page that has not been used in the most amount of time

* Associate time of last use with each page

reference string
/7 O 1 2 o 8 o0 4 2 3 o0 3 2 1 2 o 1 7 o0 A1

i | |2 2 4 14| |4 O 1 1 1
O 0| |O O 0| |O 3 3 3 O O
1 1 3 S [2 = 2 2 7

page frames

* 12 faults - better than FIFO but worse than OPT
* Generally good algorithm and frequently used

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

LRU Algorithm (Cont.) .

* Counter implementation

* Every page entry has a counter; every time page is referenced through this
entry, copy the clock into the counter

 When a page needs to be changed, look at the counters to find smallest value
* Search through table needed

» Stack implementation
* Keep a stack of page numbers in a double link form:
* Page referenced:
* move it to the top
* requires 6 pointers to be changed
* But each update more expensive
* No search for replacement

* LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Lo glEST Use Of A Stack to Record Most Recent Page References

reference string

4 7 0 7 1 o 1 2 1 2 7 1 2

a b
1 2
0] 1
7 0]
4 4
stack stack
before after

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

RU Approximation Algorithms

* LRU needs special hardware and still slow

* Reference bit
« With each page associate a bit, initially = 0
* When page is referenced bit set to 1
* Replace any with reference bit = 0 (if one exists)
 We do not know the order, however

* Second-chance algorithm
* Generally FIFO, plus hardware-provided reference bit
* Clock replacement
* If page to be replaced has
* Reference bit = 0 -> replace it
* reference bit = 1 then:
* setreference bit 0, leave page in memory
* replace next page, subject to same rules

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

INSTITUTIONS, econd-Chance (clock) Page-Replacement Algorithm

reference pages

O
=
%)

o]

]

next —

victim

I

=]
o 9§ E e

=]

H...

v

I

N

circular queue of pages

(@)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

reference pages

o]
v
o]
v
o]
v
o]
v
{0
v

N

circular queue of pages

(b)

* Improve algorithm by using reference bit and modify bit (if available) in concert

» Take ordered pair (reference, modify)

1. (0, 0) neither recently used not modified - best page to replace

2. (0, 1) not recently used but modified - not quite as good, must write out before

replacement
3. (1, 0) recently used but clean - probably will be used again soon

4. (1, 1) recently used and modified - probably will be used again soon and need to

write out before replacement

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

* Keep a counter of the number of references that have been made to each page

* Not common
* Lease Frequently Used (LFU) Algorithm: replaces page with smallest count

* Most Frequently Used (MFU) Algorithm: based on the argument that the
page with the smallest count was probably just brought in and has yet to be

used

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

N

Page-Buffering Algorithms

* Keep a pool of free frames, always
* Then frame available when needed, not found at fault time
* Read page into free frame and select victim to evict and add to free pool

« When convenient, evict victim

* Possibly, keep list of modified pages

* When backing store otherwise idle, write pages there and set to non-dirty

* Possibly, keep free frame contents intact and note what is in them

* If referenced again before reused, no need to load contents again from disk
* Generally useful to reduce penalty if wrong victim frame selected

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

R — '«\

Applications and Page Replacement

All of these algorithms have OS guessing about future page access

Some applications have better knowledge - i.e. databases

Memory intensive applications can cause double buffering
* OS keeps copy of page in memory as [/0O buffer

» Application keeps page in memory for its own work

Operating system can given direct access to the disk, getting out of the way of the

applications
* Raw disk mode

» Bypasses buffering, locking, etc

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Allocatin of Frames N

* Each process needs minimum number of frames

* Example: IBM 370 - 6 pages to handle SS MOVE instruction:
* instruction is 6 bytes, might span 2 pages
» 2 pages to handle from

* 2 pages to handle to
* Maximum of course is total frames in the system

* Two major allocation schemes

» fixed allocation
* priority allocation

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Fixed Allocation

* Equal allocation - For example, if there are 100 frames (after allocating
frames for the OS) and 5 processes, give each process 20 frames

* Keep some as free frame buffer pool

* Proportional allocation - Allocate according to the size of process
* Dynamic as degree of multiprogramming, process sizes change

— S; = Size of process p; m = 64
— S = Zsi s1=10
— m = total number of frames , =127
: S; 10 .
— a; = allocation for p; = §I < m G =T 62 » 4
a, = -127- 62 » 57

137

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

» Use a proportional allocation scheme using priorities rather than size

* If process P; generates a page fault,
* select for replacement one of its frames

* select for replacement a frame from a process with lower priority

number

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

* Global replacement - process selects a replacement frame from the set

of all frames; one process can take a frame from another
* But then process execution time can vary greatly
* But greater throughput so more common
* Local replacement - each process selects from only its own set of
allocated frames
* More consistent per-process performance

* But possibly underutilized memory

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

N

Non-Uniform Memory Access

* So far all memory accessed equally

* Many systems are NUMA - speed of access to memory varies

* Consider system boards containing CPUs and memory, interconnected over a
system bus

* Optimal performance comes from allocating memory “close to” the CPU on which
the thread is scheduled
* And modifying the scheduler to schedule the thread on the same system board
when possible
 Solved by Solaris by creating Igroups
 Structure to track CPU / Memory low latency groups
* Used my schedule and pager

 When possible schedule all threads of a process and allocate all memory for
that process within the Igroup

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Thrashing

* If a process does not have “enough” pages, the page-fault rate is very high
* Page fault to get page
* Replace existing frame
* But quickly need replaced frame back

 This leads to:

 Low CPU utilization

* Operating system thinking that it needs to increase the degree of
multiprogramming

* Another process added to the system

* Thrashing = a process is busy swapping pages in and out

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

CPU utilization

thrashing

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

degree of multiprogramming

 Why does demand paging work?

Locality model
* Process migrates from one locality to another
* Localities may overlap
* Why does thrashing occur?
2. size of locality > total memory size

 Limit effects by using local or priority page replacement

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

TTUTIONS,

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

34 it '|“‘ B ot ‘ + ”"i ~:e t | ‘H‘” =
ll‘l‘ IREITIS ‘|H|HH IHHI‘ el f“"""\”""‘|HHIH\HIHI\Il\lHHI‘HIHIH!!‘HI‘ TR .
32 I N I.‘ ™ — = “i i | ki‘” = I?I L“‘H:I }I ‘ IJ‘ I I‘|||.‘ Lk R
T ”|‘ H'”|","”M‘| o L
e ||H IW' . i |I || }II i Tx‘ itk pr
‘ H\ L -\ "J“HME‘ | ” ‘“H”i ‘ “ | | | “| ‘l |\|‘ || m h‘| ‘“l {
30 R I B ‘ ‘\ W ‘H\ ‘ [N . | \ ! \l I”'” | i T
JI'I ‘ IHI\ T O il
: L L
28 LFA T
| \!
g N { |
26 “...;.. t|| I ‘. 1
) IH \H :
E IJ ‘ ‘ ol
/ g I
24 . Al : . 1 I S| NTITTERPANTATHTRINIY Iw‘”h" L
A e
- | il
e gy v T
22 et Lt fitr
! I HIH‘III\mmu\IHHI” ‘[“ ‘ H”IH HH W HH“!" |
Hl”“”'”'”'“ H“““HHm““h | ! ;Ju“l ‘HHJIIM n‘m" |.mju.u||\|u|m|m|u-”
g |H||HHH|”|l||‘|‘|||||H!HHH||H‘ Wl TP o iy
. |,,' L |||H\\|| ‘ el
20 b HIRM LU LA i £ T
‘ 1"”’“?1-‘--- e ! G P e I‘"”I””
=: |‘I JH[!‘IJ‘ W“'\{“ T TEI TR \lll‘ll:[l\ 1, ::HH ||\HH T L LA H ‘: ‘I
& 18 |‘) Rl H”””\'“H|H’|“”|||“\|||HHI I |nutlmHIHHMHul“\l\!'”HHI!'HHIHH'\M“ "“H\”“

execution time ———

Locality In A Memory-Reference Pattern

Working-Set Model '

* A =working-set window = a fixed number of page references
Example: 10,000 instructions
» WSS, (working set of Process P,) = total number of pages referenced in the most recent A (varies in time)
 if A too small will not encompass entire locality
* if A too large will encompass several localities
* if A =00 = will encompass entire program

 D=2% WSS, =total demand frames
* Approximation of locality

* if D> m = Thrashing

* Policy if D > m, then suspend or swap out one of the processes

page reference table
...2615777751623412344434344413234443444...

— —]

2 t

WS(t,) = {1,2,5,6,7) WS(t,) = {3,4}

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

* Approximate with interval timer + a reference bit

* Example: A=10,000
* Timer interrupts after every 5000 time units
* Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and sets the values of all reference bits to 0
* If one of the bits in memory = 1 = page in working set

* Why is this not completely accurate?

* Improvement = 10 bits and interrupt every 1000 time units

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

» Establish “acceptable” page-fault frequency (PFF) rate and use local

replacement policy

* If actual rate too low, process loses frame
* [f actual rate too high, process gains frame

increase number
of frames

upper bound

page-fault rate

lower bound
decrease number
of frames

\J

number of frames
Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

- Direct relationship between working set of a process and its page-fault

rate

- Working set changes over time

« Peaks and valleys over time

working set

page
fault
rate

time

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

	Slide 1: Unit iII MEMORY MANAGEMENT
	Slide 2: MEMORY MANAGEMENT
	Slide 3: Page Replacement
	Slide 4: Need For Page Replacement
	Slide 5: Basic Page Replacement
	Slide 6: Page Replacement
	Slide 7: Page and Frame Replacement Algorithms
	Slide 8: Graph of Page Faults Versus The Number of Frames
	Slide 9: First-In-First-Out (FIFO) Algorithm
	Slide 10: FIFO Illustrating Belady’s Anomaly
	Slide 11: Optimal Algorithm
	Slide 12: Least Recently Used (LRU) Algorithm
	Slide 13: LRU Algorithm (Cont.)
	Slide 14: Use Of A Stack to Record Most Recent Page References
	Slide 15: LRU Approximation Algorithms
	Slide 16: Second-Chance (clock) Page-Replacement Algorithm
	Slide 17: Enhanced Second-Chance Algorithm
	Slide 18: Counting Algorithms
	Slide 19: Page-Buffering Algorithms
	Slide 20: Applications and Page Replacement
	Slide 21: Allocation of Frames
	Slide 22: Fixed Allocation
	Slide 23: Priority Allocation
	Slide 24: Global vs. Local Allocation
	Slide 25: Non-Uniform Memory Access
	Slide 26: Thrashing
	Slide 27: Thrashing (Cont.)
	Slide 28: Demand Paging and Thrashing
	Slide 29: Locality In A Memory-Reference Pattern
	Slide 30: Working-Set Model
	Slide 31: Keeping Track of the Working Set
	Slide 32: Page-Fault Frequency
	Slide 33: Working Sets and Page Fault Rates

