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Memory management  Virtual Memory Management

strategies - Background
* Background * Demand paging
* Swapping * Copy on write

* Contiguous Memory Allocation Page replacement algorithms

* Segmentation Allocation of frames

* Paging Thrashing.

* Structure of Page Table
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Page Replacement

* Prevent over-allocation of memory by modifying page-fault service routine to

include page replacement

* Use modify (dirty) bit to reduce overhead of page transfers — only modified

pages are written to disk

* Page replacement completes separation between logical memory and physical
memory - large virtual memory can be provided on a smaller physical

memory
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Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement algorithm to select a victim frame

- Write victim frame to disk if dirty
3. Bring the desired page into the (newly) free frame; update the page and frame tables
4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault - increasing EAT

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S



INSIHTUTIONS,
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P3N Page and Frame
PNy Y o el Replacement Algorithms

* How many frames to give each process
* Which frames to replace

* Page-replacement algorithm
* Want lowest page-fault rate on both first access and re-access

 Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string
* String is just page numbers, not full addresses
* Repeated access to the same page does not cause a page fault

* Results depend on number of frames available
* In all our examples, the reference string of referenced page numbers is
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
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INSTITUTIONS Graph of Page Faults Versus
The Number of Frames

number of page faults

number of frames
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Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

3 frames (3 pages can be in memory at a time per process)

reference string

0 1 2 o 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
7| 7] |7] [2]  |2] [2] 4] |4] [4] |0 o/ |o
| [o] [o] [o] 3] |3] |3 |2] [2] |2 1] [1] 1] o] |o
O b b [ e [of lof [3] (sl 3] [2] 2| [2]| [1]

page frames

15 page faults

Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
* Adding more frames can cause more page faults!
* Belady’s Anomaly

How to track ages of pages?
* Just use a FIFO queue
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FIFO Illustrating Belady's Anomaly
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* Replace page that will not be used for longest period of time
* 9 is optimal for the example

* How do you know this?
 Can’t read the future

* Used for measuring how well your algorithm performs

reference string
f o 1 2 o 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7zl [7] [7] [2 o] 2 o 2 =
ol o] o 0 4 0 0 0
HRERE 3 3 B : 1

page frames
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* Use past knowledge rather than future

* Replace page that has not been used in the most amount of time

* Associate time of last use with each page

reference string
/7 O 1 2 o 8 o0 4 2 3 o0 3 2 1 2 o 1 7 o0 A1

i | |2 2 4 14| |4 O 1 1 1
O 0| |O O 0| |O 3 3 3 O O
1 1 3 S [ 2 = 2 2 7

page frames

* 12 faults - better than FIFO but worse than OPT
* Generally good algorithm and frequently used
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LRU Algorithm (Cont.) .

* Counter implementation

* Every page entry has a counter; every time page is referenced through this
entry, copy the clock into the counter

 When a page needs to be changed, look at the counters to find smallest value
* Search through table needed

» Stack implementation
* Keep a stack of page numbers in a double link form:
* Page referenced:
* move it to the top
* requires 6 pointers to be changed
* But each update more expensive
* No search for replacement

* LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly
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Lo glEST Use Of A Stack to Record Most Recent Page References

reference string

4 7 0 7 1 o 1 2 1 2 7 1 2

a b
1 2
0] 1
7 0]
4 4
stack stack
before after
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RU Approximation Algorithms

* LRU needs special hardware and still slow

* Reference bit
« With each page associate a bit, initially = 0
* When page is referenced bit set to 1
* Replace any with reference bit = 0 (if one exists)
 We do not know the order, however

* Second-chance algorithm
* Generally FIFO, plus hardware-provided reference bit
* Clock replacement
* If page to be replaced has
* Reference bit = 0 -> replace it
* reference bit = 1 then:
* setreference bit 0, leave page in memory
* replace next page, subject to same rules
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INSTITUTIONS, econd-Chance (clock) Page-Replacement Algorithm
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* Improve algorithm by using reference bit and modify bit (if available) in concert

» Take ordered pair (reference, modify)

1. (0, 0) neither recently used not modified - best page to replace

2. (0, 1) not recently used but modified - not quite as good, must write out before

replacement
3. (1, 0) recently used but clean - probably will be used again soon

4. (1, 1) recently used and modified - probably will be used again soon and need to

write out before replacement
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* Keep a counter of the number of references that have been made to each page

* Not common
* Lease Frequently Used (LFU) Algorithm: replaces page with smallest count

* Most Frequently Used (MFU) Algorithm: based on the argument that the
page with the smallest count was probably just brought in and has yet to be

used
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Page-Buffering Algorithms

* Keep a pool of free frames, always
* Then frame available when needed, not found at fault time
* Read page into free frame and select victim to evict and add to free pool

« When convenient, evict victim

* Possibly, keep list of modified pages

* When backing store otherwise idle, write pages there and set to non-dirty

* Possibly, keep free frame contents intact and note what is in them

* If referenced again before reused, no need to load contents again from disk
* Generally useful to reduce penalty if wrong victim frame selected
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Applications and Page Replacement

All of these algorithms have OS guessing about future page access

Some applications have better knowledge - i.e. databases

Memory intensive applications can cause double buffering
* OS keeps copy of page in memory as [/0O buffer

» Application keeps page in memory for its own work

Operating system can given direct access to the disk, getting out of the way of the

applications
* Raw disk mode

» Bypasses buffering, locking, etc
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Allocatin of Frames N

* Each process needs minimum number of frames

* Example: IBM 370 - 6 pages to handle SS MOVE instruction:
* instruction is 6 bytes, might span 2 pages
» 2 pages to handle from

* 2 pages to handle to
* Maximum of course is total frames in the system

* Two major allocation schemes

» fixed allocation
* priority allocation
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Fixed Allocation

* Equal allocation - For example, if there are 100 frames (after allocating
frames for the OS) and 5 processes, give each process 20 frames

* Keep some as free frame buffer pool

* Proportional allocation - Allocate according to the size of process
* Dynamic as degree of multiprogramming, process sizes change

— S; = Size of process p; m = 64
— S = Zsi s1=10
— m = total number of frames , =127
: S; 10 .
— a; = allocation for p; = §I < m G =T 62 » 4
a, = -127- 62 » 57

137
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» Use a proportional allocation scheme using priorities rather than size

* If process P; generates a page fault,
* select for replacement one of its frames

* select for replacement a frame from a process with lower priority

number
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* Global replacement - process selects a replacement frame from the set

of all frames; one process can take a frame from another
* But then process execution time can vary greatly
* But greater throughput so more common
* Local replacement - each process selects from only its own set of
allocated frames
* More consistent per-process performance

* But possibly underutilized memory
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Non-Uniform Memory Access

* So far all memory accessed equally

* Many systems are NUMA - speed of access to memory varies

* Consider system boards containing CPUs and memory, interconnected over a
system bus

* Optimal performance comes from allocating memory “close to” the CPU on which
the thread is scheduled
* And modifying the scheduler to schedule the thread on the same system board
when possible
 Solved by Solaris by creating Igroups
 Structure to track CPU / Memory low latency groups
* Used my schedule and pager

 When possible schedule all threads of a process and allocate all memory for
that process within the Igroup
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Thrashing

* If a process does not have “enough” pages, the page-fault rate is very high
* Page fault to get page
* Replace existing frame
* But quickly need replaced frame back

 This leads to:

 Low CPU utilization

* Operating system thinking that it needs to increase the degree of
multiprogramming

* Another process added to the system

* Thrashing = a process is busy swapping pages in and out
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CPU utilization

thrashing
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 Why does demand paging work?

Locality model
* Process migrates from one locality to another
* Localities may overlap
* Why does thrashing occur?
2. size of locality > total memory size

 Limit effects by using local or priority page replacement
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Locality In A Memory-Reference Pattern



Working-Set Model '

* A =working-set window = a fixed number of page references
Example: 10,000 instructions
» WSS, (working set of Process P,) = total number of pages referenced in the most recent A (varies in time)
 if A too small will not encompass entire locality
* if A too large will encompass several localities
* if A =00 = will encompass entire program

 D=2% WSS, =total demand frames
* Approximation of locality

* if D> m = Thrashing

* Policy if D > m, then suspend or swap out one of the processes

page reference table
...2615777751623412344434344413234443444...

—  —]

2 t

WS(t,) = {1,2,5,6,7) WS(t,) = {3,4}
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* Approximate with interval timer + a reference bit

* Example: A=10,000
* Timer interrupts after every 5000 time units
* Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and sets the values of all reference bits to 0
* If one of the bits in memory = 1 = page in working set

* Why is this not completely accurate?

* Improvement = 10 bits and interrupt every 1000 time units
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» Establish “acceptable” page-fault frequency (PFF) rate and use local

replacement policy

* If actual rate too low, process loses frame
* [f actual rate too high, process gains frame

increase number
of frames

upper bound

page-fault rate

lower bound
decrease number
of frames

\J

number of frames
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- Direct relationship between working set of a process and its page-fault

rate

- Working set changes over time

«  Peaks and valleys over time

working set

page
fault
rate

time
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