
UNIT III

MEMORY MANAGEMENT

MEMORY MANAGEMENT

Memory management
strategies
• Background

• Swapping

• Contiguous Memory Allocation

• Segmentation

• Paging

• Structure of Page Table

Virtual Memory Management
• Background

• Demand paging

• Copy on write

• Page replacement algorithms

• Allocation of frames

• Thrashing.

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Page Replacement

• Prevent over-allocation of memory by modifying page-fault service routine to

include page replacement

• Use modify (dirty) bit to reduce overhead of page transfers – only modified

pages are written to disk

• Page replacement completes separation between logical memory and physical

memory – large virtual memory can be provided on a smaller physical

memory

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Need For Page Replacement

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

 - If there is a free frame, use it

 - If there is no free frame, use a page replacement algorithm to select a victim frame

 - Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page and frame tables

4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault – increasing EAT

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Page Replacement

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Page and Frame
 Replacement Algorithms

• Frame-allocation algorithm determines

• How many frames to give each process

• Which frames to replace

• Page-replacement algorithm

• Want lowest page-fault rate on both first access and re-access

• Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string

• String is just page numbers, not full addresses

• Repeated access to the same page does not cause a page fault

• Results depend on number of frames available

• In all our examples, the reference string of referenced page numbers is

 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Graph of Page Faults Versus
 The Number of Frames

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

First-In-First-Out (FIFO) Algorithm

• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

• 3 frames (3 pages can be in memory at a time per process)

• Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5

• Adding more frames can cause more page faults!

• Belady’s Anomaly

• How to track ages of pages?

• Just use a FIFO queue

15 page faults

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

FIFO Illustrating Belady’s Anomaly

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Optimal Algorithm

• Replace page that will not be used for longest period of time

• 9 is optimal for the example

• How do you know this?

• Can’t read the future

• Used for measuring how well your algorithm performs

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Least Recently Used (LRU) Algorithm

• Use past knowledge rather than future

• Replace page that has not been used in the most amount of time

• Associate time of last use with each page

• 12 faults – better than FIFO but worse than OPT

• Generally good algorithm and frequently used

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

LRU Algorithm (Cont.)

• Counter implementation

• Every page entry has a counter; every time page is referenced through this
entry, copy the clock into the counter

• When a page needs to be changed, look at the counters to find smallest value

• Search through table needed

• Stack implementation

• Keep a stack of page numbers in a double link form:

• Page referenced:

• move it to the top

• requires 6 pointers to be changed

• But each update more expensive

• No search for replacement

• LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Use Of A Stack to Record Most Recent Page References

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

LRU Approximation Algorithms

• LRU needs special hardware and still slow

• Reference bit

• With each page associate a bit, initially = 0

• When page is referenced bit set to 1

• Replace any with reference bit = 0 (if one exists)

• We do not know the order, however

• Second-chance algorithm

• Generally FIFO, plus hardware-provided reference bit

• Clock replacement

• If page to be replaced has

• Reference bit = 0 -> replace it

• reference bit = 1 then:

• set reference bit 0, leave page in memory

• replace next page, subject to same rules

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Second-Chance (clock) Page-Replacement Algorithm

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Enhanced Second-Chance Algorithm

• Improve algorithm by using reference bit and modify bit (if available) in concert

• Take ordered pair (reference, modify)

1. (0, 0) neither recently used not modified – best page to replace

2. (0, 1) not recently used but modified – not quite as good, must write out before

replacement

3. (1, 0) recently used but clean – probably will be used again soon

4. (1, 1) recently used and modified – probably will be used again soon and need to

write out before replacement

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Counting Algorithms

• Keep a counter of the number of references that have been made to each page

• Not common

• Lease Frequently Used (LFU) Algorithm: replaces page with smallest count

• Most Frequently Used (MFU) Algorithm: based on the argument that the

page with the smallest count was probably just brought in and has yet to be

used

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Page-Buffering Algorithms

• Keep a pool of free frames, always

• Then frame available when needed, not found at fault time

• Read page into free frame and select victim to evict and add to free pool

• When convenient, evict victim

• Possibly, keep list of modified pages

• When backing store otherwise idle, write pages there and set to non-dirty

• Possibly, keep free frame contents intact and note what is in them

• If referenced again before reused, no need to load contents again from disk

• Generally useful to reduce penalty if wrong victim frame selected

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Applications and Page Replacement

• All of these algorithms have OS guessing about future page access

• Some applications have better knowledge – i.e. databases

• Memory intensive applications can cause double buffering

• OS keeps copy of page in memory as I/O buffer

• Application keeps page in memory for its own work

• Operating system can given direct access to the disk, getting out of the way of the

applications

• Raw disk mode

• Bypasses buffering, locking, etc

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Allocation of Frames

• Each process needs minimum number of frames

• Example: IBM 370 – 6 pages to handle SS MOVE instruction:

• instruction is 6 bytes, might span 2 pages

• 2 pages to handle from

• 2 pages to handle to

• Maximum of course is total frames in the system

• Two major allocation schemes

• fixed allocation

• priority allocation

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Fixed Allocation

• Equal allocation – For example, if there are 100 frames (after allocating
frames for the OS) and 5 processes, give each process 20 frames

• Keep some as free frame buffer pool

• Proportional allocation – Allocate according to the size of process

• Dynamic as degree of multiprogramming, process sizes change

m
S

s
pa

m

sS

ps

i
ii

i

ii

==

=

=

=

 for allocation

frames of number total

 process of size m = 64

s1 =10

s2 =127

a1 =
10

137
´ 62 » 4

a2 =
127

137
´ 62 » 57

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Priority Allocation

• Use a proportional allocation scheme using priorities rather than size

• If process Pi generates a page fault,

• select for replacement one of its frames

• select for replacement a frame from a process with lower priority

number

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Global vs. Local Allocation

• Global replacement – process selects a replacement frame from the set

of all frames; one process can take a frame from another

• But then process execution time can vary greatly

• But greater throughput so more common

• Local replacement – each process selects from only its own set of

allocated frames

• More consistent per-process performance

• But possibly underutilized memory

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Non-Uniform Memory Access

• So far all memory accessed equally

• Many systems are NUMA – speed of access to memory varies

• Consider system boards containing CPUs and memory, interconnected over a
system bus

• Optimal performance comes from allocating memory “close to” the CPU on which
the thread is scheduled

• And modifying the scheduler to schedule the thread on the same system board
when possible

• Solved by Solaris by creating lgroups

• Structure to track CPU / Memory low latency groups

• Used my schedule and pager

• When possible schedule all threads of a process and allocate all memory for
that process within the lgroup

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Thrashing

• If a process does not have “enough” pages, the page-fault rate is very high

• Page fault to get page

• Replace existing frame

• But quickly need replaced frame back

• This leads to:

• Low CPU utilization

• Operating system thinking that it needs to increase the degree of
multiprogramming

• Another process added to the system

• Thrashing  a process is busy swapping pages in and out

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Thrashing (Cont.)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Demand Paging and Thrashing

• Why does demand paging work?

Locality model

• Process migrates from one locality to another

• Localities may overlap

• Why does thrashing occur?

 size of locality > total memory size

• Limit effects by using local or priority page replacement

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Locality In A Memory-Reference Pattern

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Working-Set Model

•   working-set window  a fixed number of page references
Example: 10,000 instructions

• WSSi (working set of Process Pi) = total number of pages referenced in the most recent  (varies in time)

• if  too small will not encompass entire locality

• if  too large will encompass several localities

• if  =   will encompass entire program

• D =  WSSi  total demand frames

• Approximation of locality

• if D > m  Thrashing

• Policy if D > m, then suspend or swap out one of the processes

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Keeping Track of the Working Set

• Approximate with interval timer + a reference bit

• Example:  = 10,000

• Timer interrupts after every 5000 time units

• Keep in memory 2 bits for each page

• Whenever a timer interrupts copy and sets the values of all reference bits to 0

• If one of the bits in memory = 1  page in working set

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every 1000 time units

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Page-Fault Frequency

• More direct approach than WSS

• Establish “acceptable” page-fault frequency (PFF) rate and use local

replacement policy

• If actual rate too low, process loses frame

• If actual rate too high, process gains frame

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Working Sets and Page Fault Rates

• Direct relationship between working set of a process and its page-fault
rate

• Working set changes over time

• Peaks and valleys over time

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

	Slide 1: Unit iII MEMORY MANAGEMENT
	Slide 2: MEMORY MANAGEMENT
	Slide 3: Page Replacement
	Slide 4: Need For Page Replacement
	Slide 5: Basic Page Replacement
	Slide 6: Page Replacement
	Slide 7: Page and Frame Replacement Algorithms
	Slide 8: Graph of Page Faults Versus The Number of Frames
	Slide 9: First-In-First-Out (FIFO) Algorithm
	Slide 10: FIFO Illustrating Belady’s Anomaly
	Slide 11: Optimal Algorithm
	Slide 12: Least Recently Used (LRU) Algorithm
	Slide 13: LRU Algorithm (Cont.)
	Slide 14: Use Of A Stack to Record Most Recent Page References
	Slide 15: LRU Approximation Algorithms
	Slide 16: Second-Chance (clock) Page-Replacement Algorithm
	Slide 17: Enhanced Second-Chance Algorithm
	Slide 18: Counting Algorithms
	Slide 19: Page-Buffering Algorithms
	Slide 20: Applications and Page Replacement
	Slide 21: Allocation of Frames
	Slide 22: Fixed Allocation
	Slide 23: Priority Allocation
	Slide 24: Global vs. Local Allocation
	Slide 25: Non-Uniform Memory Access
	Slide 26: Thrashing
	Slide 27: Thrashing (Cont.)
	Slide 28: Demand Paging and Thrashing
	Slide 29: Locality In A Memory-Reference Pattern
	Slide 30: Working-Set Model
	Slide 31: Keeping Track of the Working Set
	Slide 32: Page-Fault Frequency
	Slide 33: Working Sets and Page Fault Rates

