SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore - 641 107

An Autonomous Institution
Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna
University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY
Course Code and Name : 19TS601 FULL STACK DEVELOPMENT

Unit 3 : NODEJS AND EXPRESS
Topic : Node.js Web server

Redes g Cunman Vit § Beumtic bwwsd Cxries
: - - lc.mm
OP=" - ) |
Culiam INEZO] ,—/ 0 'v..-m.:
~ Vg .
Bk d 0 Colrw gy wetd Miatart Through Or Do

Tare. W




NodelS web server ¥ JE k2

Bl iy 4

* A NodelS web server is a server built using NodelS to handle HTTP
requests and responses.

* Unlike traditional web servers like Apache or Nginx, which are
primarily designed to give static content.

* NodelS web servers can handle both static and dynamic content
while supporting real-time communication.

* |t uses JavaScript (the same language used for client-side scripting) on
the server side, making it a popular choice for full-stack developers.




Setting Up a NodeJS Web Server & o =
Step 1:

* If you haven’t installed NodelS in your system,to Install NodelS

* To verify the installation, open your terminal or command prompt
and type:

node —v
This will display the installed NodelS version.
Step 2: Create Your Project Directory
* Create a new directory for your project and navigate into it:
* mkdir node-server
* cd node-server



Step 3: Initialize the Project
Create a package.json file, which contains metadata about your project:

npm init —y
Step 4: Create a Basic Server
Create a file named server.js

Open server.js in your code editor and add the following code to create
a simple HTTP server:



Rty Cummn Min § B
3p'-—‘- o
Cultar 7o

const http = require('http');

const server = http.createServer((req, res) => {
res.writeHead(200, { 'Content-Type': 'text/plain' });
res.end('Hello, World!");

});

const port = 3000;

const host = 'localhost’;

server.listen(port, host, () => {
console.log('Server running at http://S{host}:S{port}/’);

1;




Redes
o= -
)
-
'

Cultord

* Output S

Run the server by using the below command
node server.js

C ® 127.0.0.1:3000

Hello, World!

27-03-2025 NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS




ol Lo

|

‘ lo«nm
L cqe
Thomring
‘ Trares Wt

i law
-
TN
v

In this example

 http.createServer(): Creates an HTTP server that listens for requests.

* res.writeHead(): Sends a response header with the status code 200
(OK).

* res.end(): Ends the response and sends the message “Hello, World!”
to the client.

* server.listen(): Starts the server on the specified host (localhost) and
port (3000).



o Mindi § Beuseis vl [xrieney
|
eee]  — - ‘ IOenAl
. > - Domsrge
wltnm TS | vt
el

Why Use NodelS for Web Servers?

1. High Performance

2. Single Language Stack
3. Scalability

4. Real-Time Data

5. Large Ecosystem

97-03-2025 NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 3




3
|
\

Redesiping Cunman Mot § Beiorss bvwss Exvirnes
3p== in“— Jouu
Cultom g b:gn.';:,.,,_,-/ ey
B Eavprweid Wit Thrmgh Dot Drg

""" S| Tammetmnt

1.High Performance

* NodelS is designed for speed. Its non-blocking I/O model and the V8
engine allow for fast execution of JavaScript code, making it ideal for
handling high-concurrency scenarios, such as APls or real-time
applications.

2. Single Language Stack

* NodelS enables developers to use JavaScript both on the client side
and server side.

* This eliminates the need to switch between different programming
languages and allows for better integration between the front-end
and back-end.

# T imkiay FranwWed



Redes gy Cunman Vit § Dot bvasd Caries
|
3P’ — in'i— \ lo‘f““
i
5 Exvprrwetd Wbt Thrugh Oer Druige T inkiay

3. Scalability
* NodelS is scalable by design due to its event-driven architecture.

* It can easily handle more requests with minimal overhead by adding
more processes or utilizing a load balancer.

4. Real-Time Data

* NodelS is especially well-suited for applications that require real-time
data, such as chat applications, live notifications, and collaborative
platforms.

* Its WebSocket support allows for full-duplex communication
between the client and server.




5. Large Ecosystem

* NodelS has an extensive ecosystem with over a million open-source
libraries available through npm.

* These libraries make it easy to add functionality such as
authentication, routing, data handling, and much more.




Benefits of Using a NodeJS Web Server @ ar &=

¢ * Real-Time Capabilities: NodeJS can be used in the real-time applications
like chat apps or live data streaming due to its non-blocking architecture
and event-driven model.

* High Performance: The V8 engine provides fast execution of JavaScript,
making NodelS a great choice for applications requiring high
performance and low latency.

* Scalability: NodelS is highly scalable, thanks to its event loop and non-
blocking 1/0O. It can handle a large number of simultaneous requests
efficiently.

 Lightweight and Efficient: With its single-threaded, non-blocking nature,
NodelS reduces the overhead of traditional multi-threaded servers,
making it lightweight and ideal for handling concurrent requests.




How Does a NodelS Web Server Work? e y JIE

""" S| anmeat

* Event Loop: The server listens for incoming requests and processes )
them in a non-blocking way.

* When a request comes in, it is passed to the event loop, which
decides how to handle it.

* Non-Blocking 1/0: While the server is processing a request (like
querying a database or reading from a file), it does not block other
Incoming requests.

* This is handled asynchronously through callbacks, promises, or
async/await syntax.




« Request and Response: Once the event loop processes the request,
the server sends a response back to the client (browser, API
consumer, etc.). The response could be in HTML, JSON, or other data

format.

* Web Servers: NodelS can serve static files (like images or stylesheets)
and dynamic content (like APl responses) using built-in modules like
http, fs, and path.

Routing in NodelS Web Server

In real-world applications, your server needs to handle different
routes (URLs) and respond differently based on the request.

1 D T ikl FramwWat



b Ix
// server.js

const http = require('http');
const hostname ='127.0.0.1";
const port = 3000;
const server = http.createServer((req, res) => {
if (req.url ==="/") {
res.statusCode = 200;
res.setHeader('Content-Type', 'text/plain');
res.end('Welcome to the Homepage!');
} else if (reg.url === "'/about') {




Rty Cummn Min § B
3p'-—‘- o
Cultar 7o

res.statusCode = 200;
res.setHeader('Content-Type', 'text/plain');
res.end('This is the About Page');

} else if (req.url === "/contact’) {
res.statusCode = 200;
res.setHeader('Content-Type', 'text/plain');

res.end('This is the Contact Us Page');
}

else {
res.statusCode = 404;




res.setHeader('Content-Type', 'text/plain’); -l
res.end('Page Not Found');

}
1;

server.listen(port, hostname, () => {
console.log('Server running at http://S{hostname}:S{port}/’);

1);

NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

27-03-2025 17




3
|
\

Lariewy
lo«nm
D g
Thomring
7| et

In this example i
* The http.createServer() method initializes the server.

* res.writeHead() sends a response header with the status code (e.g.,
200 OK) and any other headers.

* res.statusCode sets the HTTP status code for the response. In this
case, 200 means the request was successful.

* res.setHeader() sets the content type of the response. In this case,
text/plain means the server is sending plain text back to the client.

e server.listen() binds the server to the specified port and hostname (in
this case, localhost:3000).

* When the server successfully starts, the callback function is executed,
logging a message (Server running at http://127.0.0.1:3000/) to the
console.

# T imkiay FranwWed



1.What isn Node.js web server?
2. What are the advantages of Node.js?

3. What are the benefits of Node.js?

27-03-2025 NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS



Redesgay Cunman Vit § Beuseis Twasds Cxrieey
|
<7385 + S
e - - Oomsrge
ext Book: T
Bl d o Sy ey weid Wiaturt T rongh Our Dirige T indlny FramwWad

1.Pro MERN Stack, Full Stack Web App Development with
Mongo, Express, React, and Node, Vasan Subramanian, A Press
Publisher, 2019.

Reference:

David Flanagan, “Java Script: The Definitive Guide”, O’Reilly
Media, Inc, 7 th Edition, 2020

2. Matt Frisbie, “Professional JavaScript for Web Developers”
Wiley Publishing, Inc, 4t Edition, ISBN: 978-1-119-36656-0,
2019




Redrsgag Cunmen Vit § Bonris ewasd Cxviensy

-l -— lomu
IP= < S
Cultar TUTIONTE | e

el

Bl o Eolwprr e Wbt Though O Drvigs T ikl FraneWod

27-03-2025 NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 21



