
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

An Autonomous Institution
Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna
University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY
Course Code and Name : 19TS601 FULL STACK DEVELOPMENT

Unit 3 : NODEJS AND EXPRESS
Topic : Node.js Web server

1NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS27-03-2025

NodeJS web server

27-03-2025 2
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• A NodeJS web server is a server built using NodeJS to handle HTTP
requests and responses.

• Unlike traditional web servers like Apache or Nginx, which are
primarily designed to give static content.

• NodeJS web servers can handle both static and dynamic content
while supporting real-time communication.

• It uses JavaScript (the same language used for client-side scripting) on
the server side, making it a popular choice for full-stack developers.

Setting Up a NodeJS Web Server

27-03-2025 3
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Step 1:

• If you haven’t installed NodeJS in your system,to Install NodeJS

• To verify the installation, open your terminal or command prompt
and type:

node –v

This will display the installed NodeJS version.

Step 2: Create Your Project Directory

• Create a new directory for your project and navigate into it:

• mkdir node-server

• cd node-server

27-03-2025 4
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Step 3: Initialize the Project
Create a package.json file, which contains metadata about your project:

npm init –y

Step 4: Create a Basic Server

Create a file named server.js

Open server.js in your code editor and add the following code to create
a simple HTTP server:

27-03-2025 5
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

const http = require('http');

const server = http.createServer((req, res) => {

res.writeHead(200, { 'Content-Type': 'text/plain' });

res.end('Hello, World!');

});

const port = 3000;

const host = 'localhost';

server.listen(port, host, () => {

console.log(`Server running at http://${host}:${port}/`);

});

27-03-2025 6
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Output

Run the server by using the below command

node server.js

27-03-2025 7
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

In this example

• http.createServer(): Creates an HTTP server that listens for requests.

• res.writeHead(): Sends a response header with the status code 200
(OK).

• res.end(): Ends the response and sends the message “Hello, World!”
to the client.

• server.listen(): Starts the server on the specified host (localhost) and
port (3000).

Why Use NodeJS for Web Servers?

27-03-2025 8
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

1. High Performance

2. Single Language Stack

3. Scalability

4. Real-Time Data

5. Large Ecosystem

27-03-2025 9
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

1.High Performance

• NodeJS is designed for speed. Its non-blocking I/O model and the V8
engine allow for fast execution of JavaScript code, making it ideal for
handling high-concurrency scenarios, such as APIs or real-time
applications.

2. Single Language Stack

• NodeJS enables developers to use JavaScript both on the client side
and server side.

• This eliminates the need to switch between different programming
languages and allows for better integration between the front-end
and back-end.

27-03-2025 10
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

3. Scalability

• NodeJS is scalable by design due to its event-driven architecture.

• It can easily handle more requests with minimal overhead by adding
more processes or utilizing a load balancer.

4. Real-Time Data

• NodeJS is especially well-suited for applications that require real-time
data, such as chat applications, live notifications, and collaborative
platforms.

• Its WebSocket support allows for full-duplex communication
between the client and server.

27-03-2025 11
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

5. Large Ecosystem

• NodeJS has an extensive ecosystem with over a million open-source
libraries available through npm.

• These libraries make it easy to add functionality such as
authentication, routing, data handling, and much more.

Benefits of Using a NodeJS Web Server

27-03-2025 12
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Real-Time Capabilities: NodeJS can be used in the real-time applications
like chat apps or live data streaming due to its non-blocking architecture
and event-driven model.

• High Performance: The V8 engine provides fast execution of JavaScript,
making NodeJS a great choice for applications requiring high
performance and low latency.

• Scalability: NodeJS is highly scalable, thanks to its event loop and non-
blocking I/O. It can handle a large number of simultaneous requests
efficiently.

• Lightweight and Efficient: With its single-threaded, non-blocking nature,
NodeJS reduces the overhead of traditional multi-threaded servers,
making it lightweight and ideal for handling concurrent requests.

How Does a NodeJS Web Server Work?

27-03-2025 13
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Event Loop: The server listens for incoming requests and processes
them in a non-blocking way.

• When a request comes in, it is passed to the event loop, which
decides how to handle it.

• Non-Blocking I/O: While the server is processing a request (like
querying a database or reading from a file), it does not block other
incoming requests.

• This is handled asynchronously through callbacks, promises, or
async/await syntax.

27-03-2025 14
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Request and Response: Once the event loop processes the request,
the server sends a response back to the client (browser, API
consumer, etc.). The response could be in HTML, JSON, or other data
format.

• Web Servers: NodeJS can serve static files (like images or stylesheets)
and dynamic content (like API responses) using built-in modules like
http, fs, and path.

Routing in NodeJS Web Server

In real-world applications, your server needs to handle different
routes (URLs) and respond differently based on the request.

27-03-2025 15
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

// server.js

const http = require('http');

const hostname = '127.0.0.1';

const port = 3000;

const server = http.createServer((req, res) => {

if (req.url === '/') {

res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('Welcome to the Homepage!');

} else if (req.url === '/about') {

27-03-2025 16
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('This is the About Page');

} else if (req.url === '/contact') {

res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('This is the Contact Us Page');

}

else {

res.statusCode = 404;

27-03-2025 17
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

res.setHeader('Content-Type', 'text/plain');

res.end('Page Not Found');

}

});

server.listen(port, hostname, () => {

console.log(`Server running at http://${hostname}:${port}/`);

});

27-03-2025 18
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

In this example

• The http.createServer() method initializes the server.

• res.writeHead() sends a response header with the status code (e.g.,
200 OK) and any other headers.

• res.statusCode sets the HTTP status code for the response. In this
case, 200 means the request was successful.

• res.setHeader() sets the content type of the response. In this case,
text/plain means the server is sending plain text back to the client.

• server.listen() binds the server to the specified port and hostname (in
this case, localhost:3000).

• When the server successfully starts, the callback function is executed,
logging a message (Server running at http://127.0.0.1:3000/) to the
console.

27-03-2025 NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 19

1.What isn Node.js web server?
2. What are the advantages of Node.js?
3. What are the benefits of Node.js?

Text Book:
1.Pro MERN Stack, Full Stack Web App Development with
Mongo, Express, React, and Node, Vasan Subramanian, A Press
Publisher, 2019.
Reference:
David Flanagan, “Java Script: The Definitive Guide”, O’Reilly
Media, Inc, 7 th Edition, 2020
2. Matt Frisbie, “Professional JavaScript for Web Developers”
Wiley Publishing, Inc, 4th Edition, ISBN: 978-1-119-36656-0,
2019

27-03-2025 NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 20

27-03-2025 NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 21

