
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Artificial Intelligence and

Data Science

3/27/2025 1
SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED SOFTWARE

ENGINEERING/SNSCE

3/27/2025 2SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED SOFTWARE
ENGINEERING/SNSCE

Coupling and Cohesion

3/27/2025 3SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED SOFTWARE
ENGINEERING/SNSCE

Cohesion
1. Cohesion
• What it means: Cohesion refers to how closely the responsibilities of a

module (or part of a program) are related to each other. A module with
high cohesion means that the things it does are very closely related,
whereas a module with low cohesion means it tries to do many
different things that aren’t really connected.

• Why it’s important: High cohesion is usually better because it makes
the module easier to understand, test, and maintain. It also leads to
code that's more organized and focused.

• Example of High Cohesion: Imagine a "Weather Forecast" module that
only focuses on getting and showing weather information. Everything
inside this module is related to weather, so it has high cohesion.

• Example of Low Cohesion: Now imagine a "Weather Forecast" module
that also handles user logins, payment processing, and sends emails.
This module has low cohesion because it’s trying to do too many
different things that aren’t related to each other.

3/27/2025 4SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED SOFTWARE
ENGINEERING/SNSCE

Types of Cohesion

1. Functional Cohesion

 What it is: This is the best type of cohesion. All the elements (or tasks)

in a module are focused on performing a single well-defined task. They

work together to achieve one function.

 Example: A module that calculates the area of a rectangle. It only does

this task and nothing else. All the tasks in this module are related and

focused on calculating the area, making the module very cohesive.

 Why it's good: It leads to easy-to-understand, reusable, and

maintainable code.

3/27/2025 5SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED SOFTWARE
ENGINEERING/SNSCE

Types of Cohesion

2. Sequential Cohesion
What it is: This occurs when the output of one part of the module becomes the input for another
part. There’s a flow of data between the elements.
Example: A module that reads data, then processes the data, and finally prints the results. The
tasks are performed one after another in a sequence, and each task depends on the output of the
previous one.
Why it’s useful: It’s common in functional programming, where the output of one function naturally
leads to the next function.
3. Communicational Cohesion
What it is: This occurs when the elements in a module work on the same data or contribute to the
same output.
Example: A module that updates a record in a database and sends the updated record to a printer.
Both actions involve the same data (the record).
Why it’s good: The tasks are related because they use the same data and contribute to a common
purpose.

3/27/2025 6SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED SOFTWARE
ENGINEERING/SNSCE

Types of Cohesion
4. Procedural Cohesion
What it is: This type of cohesion happens when elements are grouped together based on the order
of execution, even though the tasks may not be closely related in function.
Example: A module that calculates a student's GPA, prints the student record, calculates
cumulative GPA, and prints the cumulative GPA. These tasks are related in terms of the sequence of
actions, but they are not directly related to each other in purpose.
Why it’s less ideal: It can be harder to maintain because tasks aren't really related in what they do,
just in when they happen.
5. Temporal Cohesion
What it is: This occurs when tasks are grouped together because they need to be executed at the
same time or in the same time span. These tasks may not be functionally related, but they happen
together.
Example: A module that initializes the system by setting up database connections, loading
configuration files, and starting background tasks. These tasks don’t really relate to each other but
need to be done together when the system starts.
Why it’s useful: It’s often used in real-time or embedded systems where tasks need to be performed
together within a specific timeframe.

3/27/2025 7SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED SOFTWARE
ENGINEERING/SNSCE

Types of Cohesion
6. Logical Cohesion
What it is: This occurs when tasks are logically related, but not functionally. The tasks perform
different operations, but they are grouped because they are related by type.
Example: A module that handles input from multiple sources, like a disk, a network, and a tape. All
these inputs are logically related because they’re types of input, but they perform different
functions.
Why it’s not ideal: The tasks are related in type but not in functionality, so it can make the module
hard to maintain.
7. Coincidental Cohesion
What it is: This is the worst form of cohesion. Tasks in a module are not related at all and have no
logical or functional connection. The only thing they have in common is that they are in the same
module.
Example: A module that prints the next line and reverses a string. These tasks don’t share any
purpose or function but happen to be in the same module.
Why it’s bad: It makes the code hard to understand, maintain, and modify because the tasks are
completely unrelated.

3/27/2025 8SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED SOFTWARE
ENGINEERING/SNSCE

Coupling

What it means: Coupling refers to how much one module or part of the
system depends on other modules. Low coupling means the modules are
independent, while high coupling means the modules are tightly connected
and depend a lot on each other.
Why it’s important: Low coupling is generally better because it allows
modules to work independently of each other. This makes your software
more flexible and easier to modify because you can change one part without
affecting others.
Example of Low Coupling: Imagine you have a "User Profile" module and a
"Settings" module. If these two modules don’t need to know much about
each other, they are loosely coupled. Each one can work on its own without
disturbing the other.
Example of High Coupling: Now, imagine that the "User Profile" module
needs constant updates from the "Settings" module for everything to work.
If you want to change the "Settings" module, you have to change the "User
Profile" module too. That’s high coupling.

3/27/2025 9SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED SOFTWARE
ENGINEERING/SNSCE

Types of Coupling

1. Data Coupling

 What it is: This is the best kind of coupling. It happens when modules communicate only by

passing data. They don’t rely on each other’s internal details.

 Example: Think of a Customer Billing System. One part calculates the bill, and the other part

generates the invoice. They just pass the total amount between them, not much else.

 Why it's good: The modules are independent, so if one changes, the other won’t be affected

much.

3/27/2025 10SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED SOFTWARE
ENGINEERING/SNSCE

Types of Coupling

2. Stamp Coupling
What it is: Here, one module passes a whole data structure (like an object or a list) to another
module, even though the second module only needs part of it.
Example: Imagine a Student Record System. One module passes the entire student record (name,
ID, grades) to another module, even though it only needs the grades.
Why it's okay: It might be necessary for efficiency, but it’s not ideal because the second module is
getting more data than it actually needs.
3. Control Coupling
What it is: This happens when modules communicate by passing control information (like flags or
parameters that tell what to do next).
Example: Think of a sort function that takes a comparison function as a parameter. The comparison
function decides how the sorting will work.
Why it can be good: The function is reusable and flexible because it can sort in different ways
depending on the comparison function passed.

3/27/2025 11SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED SOFTWARE
ENGINEERING/SNSCE

Types of Coupling

4. External Coupling
What it is: This happens when a module depends on external systems or hardware, like a file
format or protocol.
Example: A module that reads from an external file. The file format must remain the same, or the
module won’t work.
Why it's problematic: Dependencies on external systems make the software harder to maintain
and update.
5. Common Coupling
What it is: Modules share global data. If one module changes the global data, it affects all other
modules using it.
Example: Imagine two modules that use a global variable like totalBalance. If one module changes
this balance, the other module’s behavior might change unexpectedly.
Why it's bad: Global data can make the system harder to understand and modify, and changes in
one place can break other parts of the system.

3/27/2025 12SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED SOFTWARE
ENGINEERING/SNSCE

Types of Coupling

6. Content Coupling
What it is: This is the worst kind of coupling. One module can modify the internal data of another
module, or the control flow is passed directly from one module to another.
Example: One module directly changes the internal data of another module, which breaks the
module's internal workings.
Why it’s bad: This makes the system very tightly coupled, and it’s hard to change or maintain
without breaking things.

3/27/2025 13SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED SOFTWARE
ENGINEERING/SNSCE

How Cohesion and Coupling Work

Together
• High Cohesion and Low Coupling are considered best practices in software design.
• High cohesion ensures that each module is focused and efficient in what it does.
Low coupling ensures that modules don’t depend too much on each other, making the system
easier to modify and maintain.
Example to Compare Both:
Imagine you’re building a Music Player app.

If the Song Library module only handles songs and nothing else, that’s high cohesion (it does
one thing very well).
If this Song Library module doesn’t rely too much on other parts of the app (like the "Playlist"
module), that’s low coupling.

When both of these things are achieved, your software becomes more organized, easier to
maintain, and less likely to break when you make changes.

3/27/2025 14SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED SOFTWARE
ENGINEERING/SNSCE

Difference between Coupling and

Cohesion

3/27/2025 15SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED
SOFTWARE ENGINEERING/SNSCE

