
SNS COLLEGE OF

ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna University,

Chennai

Department of Information Technology

Object Oriented Software Engineering

Unified Modeling Language (UML)
Class diagrams

Prepared By
R.Vaishnavi.,AP/IT

SNSCE.

25-Feb-25
R.Vaishnavi,AP/IT,SNSCE

1

225-Feb-25 R.Vaishnavi,AP/IT,SNSCE

Class Diagrams :

 Class diagrams are a type of UML (Unified Modeling Language)

diagram used in software engineering to visually represent the structure

and relationships of classes within a system i.e. used to construct and

visualize object-oriented systems.

 In these diagrams, classes are depicted as boxes, each containing

three compartments for the class name, attributes, and methods. Lines

connecting classes illustrate associations, showing relationships such as

one-to-one or one-to-many.

325-Feb-25 R.Vaishnavi,AP/IT,SNSCE

425-Feb-25 R.Vaishnavi,AP/IT,SNSCE

Class:

 In object-oriented programming (OOP), a class is a blueprint or

template for creating objects.

 Objects are instances of classes, and each class defines a set of

attributes (data members) and methods (functions or procedures) that

the objects created from that class will possess.

 The attributes represent the characteristics or properties of the

object, while the methods define the behaviors or actions that the object

can perform.

525-Feb-25 R.Vaishnavi,AP/IT,SNSCE

UML Class Notation

Class notation is a graphical representation used to depict classes

and their relationships in object-oriented modeling.

625-Feb-25 R.Vaishnavi,AP/IT,SNSCE

1.Class Name:

 The name of the class is typically written in the top

compartment of the class box and is centered and bold.

2.Attributes:

 Attributes, also known as properties or fields, represent the

data members of the class.

They are listed in the second compartment of the class box and

often include the visibility (e.g., public, private) and the data type

of each attribute.

725-Feb-25 R.Vaishnavi,AP/IT,SNSCE

3.Methods:

•Methods, also known as functions or operations, represent the

behavior or functionality of the class.

•They are listed in the third compartment of the class box and include

the visibility (e.g., public, private), return type, and parameters of

each method.

4.Visibility Notation:

•Visibility notations indicate the access level of attributes and

methods. Common visibility notations include:

•+ for public (visible to all classes)

•- for private (visible only within the class)

•# for protected (visible to subclasses)

•~ for package or default visibility (visible to classes in the same

package)

825-Feb-25 R.Vaishnavi,AP/IT,SNSCE

Relationships between classes

 In class diagrams, relationships between classes describe how

classes are connected or interact with each other within a

system. There are several types of relationships in object-

oriented modeling, each serving a specific purpose.

 Here are some common types of relationships in class

diagrams:

1. Association

 An association represents a bi-directional relationship between two

classes.

 It indicates that instances of one class are connected to instances of

another class. Associations are typically depicted as a solid line

connecting the classes, with optional arrows indicating the direction of

the relationship.

Let’s understand association using an example:

 Let’s consider a simple system for managing a library. In this system,

we have two main entities: Book and Library.

 Each Library contains multiple Books, and each Book belongs to a

specific Library. This relationship between Library and Book

represents an association.

925-Feb-25 R.Vaishnavi,AP/IT,SNSCE

1025-Feb-25 R.Vaishnavi,AP/IT,SNSCE

 The “Library” class can be considered the source class because it contains

a reference to multiple instances of the “Book” class.

 The “Book” class would be considered the target class because it belongs

to a specific library.

2. Directed Association

 A directed association in a UML class diagram represents a relationship

between two classes where the association has a direction, indicating that one

class is associated with another in a specific way.

 In a directed association, an arrowhead is added to the association line to

indicate the direction of the relationship.

 The arrow points from the class that initiates the association to the class that is

being targeted or affected by the association.

 Directed associations are used when the association has a specific flow or

directionality, such as indicating which class is responsible for initiating the

association or which class has a dependency on another.

1125-Feb-25 R.Vaishnavi,AP/IT,SNSCE

1225-Feb-25 R.Vaishnavi,AP/IT,SNSCE

Consider a scenario where a “Teacher” class is associated with a “Course” class

in a university system.

 The directed association arrow may point from the “Teacher” class to the

“Course” class, indicating that a teacher is associated with or teaches a

specific course.

 The source class is the “Teacher” class. The “Teacher” class initiates the

association by teaching a specific course. The target class is the “Course”

class. The “Course” class is affected by the association as it is being taught

by a specific teacher.

3. Aggregation

 Aggregation is a specialized form of association that represents a “whole-

part” relationship.

 It denotes a stronger relationship where one class (the whole) contains or is

composed of another class (the part).

 Aggregation is represented by a diamond shape on the side of the whole class.

 In this kind of relationship, the child class can exist independently of its

parent class.

1325-Feb-25 R.Vaishnavi,AP/IT,SNSCE

1425-Feb-25 R.Vaishnavi,AP/IT,SNSCE

Let’s understand aggregation using an example:

 The company can be considered as the whole, while the employees are

the parts. Employees belong to the company, and the company can have

multiple employees. However, if the company ceases to exist, the

employees can still exist independently.

4. Composition

 Composition is a stronger form of aggregation, indicating a more significant

ownership or dependency relationship.

 In composition, the part class cannot exist independently of the whole class.

Composition is represented by a filled diamond shape on the side of the

whole class.

Let’s understand Composition using an example:

 Imagine a digital contact book application. The contact book is the whole,

and each contact entry is a part.

 Each contact entry is fully owned and managed by the contact book. If the

contact book is deleted or destroyed, all associated contact entries are also

removed.

1525-Feb-25 R.Vaishnavi,AP/IT,SNSCE

1625-Feb-25 R.Vaishnavi,AP/IT,SNSCE

 This illustrates composition because the existence of the contact

entries depends entirely on the presence of the contact book.

 Without the contact book, the individual contact entries lose their

meaning and cannot exist on their own.

5. Generalization(Inheritance)

 Inheritance represents an “is-a” relationship between classes, where

one class (the subclass or child) inherits the properties and behaviors

of another class (the superclass or parent).

 Inheritance is depicted by a solid line with a closed, hollow

arrowhead pointing from the subclass to the superclass.

 In the example of bank accounts, we can use generalization to

represent different types of accounts such as current accounts, savings

accounts, and credit accounts.

1725-Feb-25 R.Vaishnavi,AP/IT,SNSCE

1825-Feb-25 R.Vaishnavi,AP/IT,SNSCE

The Bank Account class serves as the generalized representation of

all types of bank accounts, while the subclasses (Current Account,

Savings Account, Credit Account) represent specialized versions that

inherit and extend the functionality of the base class.

6. Realization (Interface Implementation)

 Realization indicates that a class implements the features of an interface. It is

often used in cases where a class realizes the operations defined by an

interface. Realization is depicted by a dashed line with an open arrowhead

pointing from the implementing class to the interface.

 Let’s consider the scenario where a “Person” and a “Corporation” both

realizing an “Owner” interface.

Owner Interface: This interface now includes methods such as

“acquire(property)” and “dispose(property)” to represent actions related to

acquiring and disposing of property.

Person Class (Realization): The Person class implements the Owner interface,

providing concrete implementations for the “acquire(property)” and

“dispose(property)” methods. For instance, a person can acquire ownership of a

house or dispose of a car.

1925-Feb-25 R.Vaishnavi,AP/IT,SNSCE

2025-Feb-25 R.Vaishnavi,AP/IT,SNSCE

Corporation Class (Realization): Similarly, the Corporation class also

implements the Owner interface, offering specific implementations for the

“acquire(property)” and “dispose(property)” methods. For example, a corporation

can acquire ownership of real estate properties or dispose of company vehicles.

Both the Person and Corporation classes realize the Owner interface, meaning they

provide concrete implementations for the “acquire(property)” and

“dispose(property)” methods defined in the interface.

7. Dependency Relationship

 A dependency exists between two classes when one class relies on another,

but the relationship is not as strong as association or inheritance.

 It represents a more loosely coupled connection between classes.

Dependencies are often depicted as a dashed arrow.

Let’s consider a scenario where a Person depends on a Book.

Person Class: Represents an individual who reads a book. The Person class

depends on the Book class to access and read the content.

Book Class: Represents a book that contains content to be read by a person. The

Book class is independent and can exist without the Person class.

2125-Feb-25 R.Vaishnavi,AP/IT,SNSCE

2225-Feb-25 R.Vaishnavi,AP/IT,SNSCE

 The Person class depends on the Book class because it requires

access to a book to read its content.

 However, the Book class does not depend on the Person class; it can

exist independently and does not rely on the Person class for its

functionality.

8. Usage(Dependency) Relationship

 A usage dependency relationship in a UML class diagram indicates that one

class (the client) utilizes or depends on another class (the supplier) to perform

certain tasks or access certain functionality.

 The client class relies on the services provided by the supplier class but does

not own or create instances of it.

In UML class diagrams, usage dependencies are typically represented by a

dashed arrowed line pointing from the client class to the supplier class.

The arrow indicates the direction of the dependency, showing that the client class

depends on the services provided by the supplier class.

2325-Feb-25 R.Vaishnavi,AP/IT,SNSCE

2425-Feb-25 R.Vaishnavi,AP/IT,SNSCE

Consider a scenario where a “Car” class depends on a “FuelTank” class

to manage fuel consumption.

The “Car” class may need to access methods or attributes of the

“FuelTank” class to check the fuel level, refill fuel, or monitor fuel

consumption.

In this case, the “Car” class has a usage dependency on the “FuelTank”

class because it utilizes its services to perform certain tasks related to

fuel management.

Purpose of Class Diagrams

The main purpose of using class diagrams is:

 This is the only UML that can appropriately depict various aspects of the

OOPs concept.

 Proper design and analysis of applications can be faster and efficient.

 It is the base for deployment and component diagram.

 It incorporates forward and reverse engineering.

2525-Feb-25 R.Vaishnavi,AP/IT,SNSCE

Benefits of Class Diagrams

- Class diagrams represent the system’s classes, attributes, methods, and

relationships, providing a clear view of its architecture.

- They shows various relationships between classes, such as associations and

inheritance, helping stakeholders understand component connectivity.

- Class diagrams serve as a visual tool for communication among team

members and stakeholders, bridging gaps between technical and non-

technical audiences.

- They guide developers in coding by illustrating the design, ensuring

consistency between the design and actual implementation.

- Many development tools allow for code generation from class diagrams,

reducing manual errors and saving time.

2625-Feb-25 R.Vaishnavi,AP/IT,SNSCE

Steps to draw class diagrams:

 Identify Classes:

 List Attributes and Methods:

 Identify Relationships:

 Create Class Boxes:

 Add Attributes and Methods:

 Draw Relationships:

 Label Relationships:

 Review and Refine:

2725-Feb-25 R.Vaishnavi,AP/IT,SNSCE

