
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE & Affiliated to Anna University, Chennai
DEPARTMENT OF INFORMATION TECHNOLOGY

Unit 3

Coupling and Cohesion

Coupling

What it means: Coupling refers to how much one module or part of the system
depends on other modules. Low coupling means the modules are independent,
while high coupling means the modules are tightly connected and depend a lot on
each other.

Why it’s important: Low coupling is generally better because it allows modules
to work independently of each other. This makes your software more flexible and
easier to modify because you can change one part without affecting others.

Example of Low Coupling: Imagine you have a "User Profile" module and a
"Settings" module. If these two modules don’t need to know much about each
other, they are loosely coupled. Each one can work on its own without disturbing
the other.

Example of High Coupling: Now, imagine that the "User Profile" module needs
constant updates from the "Settings" module for everything to work. If you want to
change the "Settings" module, you have to change the "User Profile" module too.
That’s high coupling.



Types of Coupling:

1. Data Coupling

 What it is: This is the best kind of coupling. It happens when modules
communicate only by passing data. They don’t rely on each other’s internal
details.

 Example: Think of a Customer Billing System. One part calculates the bill,
and the other part generates the invoice. They just pass the total amount
between them, not much else.

 Why it's good: The modules are independent, so if one changes, the other
won’t be affected much.

2. Stamp Coupling

 What it is: Here, one module passes a whole data structure (like an object
or a list) to another module, even though the second module only needs part
of it.

 Example: Imagine a Student Record System. One module passes the entire
student record (name, ID, grades) to another module, even though it only
needs the grades.



 Why it's okay: It might be necessary for efficiency, but it’s not ideal
because the second module is getting more data than it actually needs.

3. Control Coupling

 What it is: This happens when modules communicate by passing control
information (like flags or parameters that tell what to do next).

 Example: Think of a sort function that takes a comparison function as a
parameter. The comparison function decides how the sorting will work.

 Why it can be good: The function is reusable and flexible because it can
sort in different ways depending on the comparison function passed.

4. External Coupling

 What it is: This happens when a module depends on external systems or
hardware, like a file format or protocol.

 Example: A module that reads from an external file. The file format must
remain the same, or the module won’t work.

 Why it's problematic: Dependencies on external systems make the software
harder tomaintain and update.

5. Common Coupling

 What it is: Modules share global data. If one module changes the global
data, it affects all other modules using it.

 Example: Imagine two modules that use a global variable like totalBalance.
If one module changes this balance, the other module’s behavior might
change unexpectedly.

 Why it's bad: Global data can make the system harder to understand and
modify, and changes in one place can break other parts of the system.

6. Content Coupling

 What it is: This is the worst kind of coupling. One module canmodify the
internal data of another module, or the control flow is passed directly from
one module to another.



 Example: One module directly changes the internal data of another module,
which breaks the module's internal workings.

 Why it’s bad: This makes the system very tightly coupled, and it’s hard to
change or maintain without breaking things.

7. Temporal Coupling

 What it is: Modules depend on the timing or order of events. One module
must execute before the other.

 Example: Imagine a process whereModule A must finish saving data
beforeModule B starts sending an email. If the order is wrong, it could
break the system.

 Why it’s problematic: If the timing is not handled properly, things may not
work as expected, and it becomes hard to test andmaintain.

8. Sequential Coupling

 What it is: This happens when the output of one module is used as the
input of another module.

 Example: Module A processes data and sends the result to Module B, which
then processes it further. They depend on each other’s output and input.

 Why it’s difficult: If Module A changes its output, Module B may break. It
can make the system hard to modify.

9. Communicational Coupling

 What it is: This occurs when modules share a common communication
method, like a shared message queue or database.

 Example: Two modules share a database to send and receive information.
 Why it’s problematic: Sharing a communication system can create

performance issues and difficulties in debugging.

10. Functional Coupling

 What it is: This happens when two modules depend on each other’s
functionality.

 Example: Module A calls a function in Module B to perform a task. If
Module B’s function changes, Module A might break.

 Why it’s bad: Tight dependencies like this make the system difficult to
maintain and update.



11. Data-Structured Couplng

 What it is: This occurs when two modules share the same data structure,
like a database table.

 Example: Two modules share a database table to read and update data. If
the table structure changes, both modules can break.

 Why it’s problematic: Changes to the shared data structure can cause
problems in multiple places, making maintenance difficult.

12. Interaction Coupling

 What it is: This happens when methods from one class invoke methods of
another class.

 Example: Module A directly calls methods in Module B to perform its tasks.
This is interaction between the two modules.

 Why it’s bad: If methods in Module B change, Module A might break,
making the system hard to modify.

13. Component Coupling

 What it is: This refers to a class having variables ormethods of another
class.

 Example: Class A has an instance variable of Class B. If Class B changes,
Class A might need to change as well.

 Why it’s problematic: Changes in one class may force changes in other
classes, leading to tight coupling and hard maintenance.



Cohesion

1. Cohesion

 What it means: Cohesion refers to how closely the responsibilities of a
module (or part of a program) are related to each other. A module with high
cohesion means that the things it does are very closely related, whereas a
module with low cohesion means it tries to do many different things that
aren’t really connected.

 Why it’s important: High cohesion is usually better because it makes the
module easier to understand, test, and maintain. It also leads to code that's
more organized and focused.

 Example of High Cohesion: Imagine a "Weather Forecast" module that
only focuses on getting and showing weather information. Everything inside
this module is related to weather, so it has high cohesion.

 Example of Low Cohesion: Now imagine a "Weather Forecast" module
that also handles user logins, payment processing, and sends emails. This
module has low cohesion because it’s trying to do too many different things
that aren’t related to each other.



Types of Cohesion:

1. Functional Cohesion

 What it is: This is the best type of cohesion. All the elements (or tasks) in a
module are focused on performing a single well-defined task. They work
together to achieve one function.

 Example: A module that calculates the area of a rectangle. It only does this
task and nothing else. All the tasks in this module are related and focused
on calculating the area, making the module very cohesive.

 Why it's good: It leads to easy-to-understand, reusable, and maintainable
code.

2. Sequential Cohesion

 What it is: This occurs when the output of one part of the module becomes
the input for another part. There’s a flow of data between the elements.

 Example: A module that reads data, then processes the data, and finally
prints the results. The tasks are performed one after another in a sequence,
and each task depends on the output of the previous one.



 Why it’s useful: It’s common in functional programming, where the output
of one function naturally leads to the next function.

3. Communicational Cohesion

 What it is: This occurs when the elements in a module work on the same
data or contribute to the same output.

 Example: A module that updates a record in a database and sends the
updated record to a printer. Both actions involve the same data (the
record).

 Why it’s good: The tasks are related because they use the same data and
contribute to a common purpose.

4. Procedural Cohesion

 What it is: This type of cohesion happens when elements are grouped
together based on the order of execution, even though the tasks may not
be closely related in function.

 Example: A module that calculates a student's GPA, prints the student
record, calculates cumulative GPA, and prints the cumulative GPA. These
tasks are related in terms of the sequence of actions, but they are not
directly related to each other in purpose.

 Why it’s less ideal: It can be harder to maintain because tasks aren't really
related in what they do, just in when they happen.

5. Temporal Cohesion

 What it is: This occurs when tasks are grouped together because they need
to be executed at the same time or in the same time span. These tasks
may not be functionally related, but they happen together.

 Example: A module that initializes the system by setting up database
connections, loading configuration files, and starting background tasks.
These tasks don’t really relate to each other but need to be done together
when the system starts.

 Why it’s useful: It’s often used in real-time or embedded systems where
tasks need to be performed together within a specific timeframe.

6. Logical Cohesion



 What it is: This occurs when tasks are logically related, but not functionally.
The tasks perform different operations, but they are grouped because they
are related by type.

 Example: A module that handles input from multiple sources, like a disk, a
network, and a tape. All these inputs are logically related because they’re
types of input, but they perform different functions.

 Why it’s not ideal: The tasks are related in type but not in functionality, so
it can make the module hard to maintain.

7. Coincidental Cohesion

 What it is: This is the worst form of cohesion. Tasks in a module are not
related at all and have no logical or functional connection. The only thing
they have in common is that they are in the same module.

 Example: A module that prints the next line and reverses a string. These
tasks don’t share any purpose or function but happen to be in the same
module.

 Why it’s bad: It makes the code hard to understand, maintain, and modify
because the tasks are completely unrelated.

8. Informational Cohesion

 What it is: This happens when the tasks in a module are grouped because
they operate on the same data structure or object.

 Example: A module that handles operations for a Student object — like
adding grades, calculating average grade, and printing the student’s
details. All these tasks work on the same data, which is the Student object.

 Why it’s good: It’s useful in object-oriented programming, where tasks
related to a specific data structure are grouped together.

9. Layer Cohesion

 What it is: This occurs when tasks are grouped together based on their
level of abstraction or responsibility. A module handles only specific layers
of the system.

 Example: A database access layer module might handle all operations
related to reading and writing to a database, while a business logic layer
module handles operations related to calculations or processing business
rules.



 Why it’s useful: It organizes code by its purpose, making it easier to
maintain and update.


	1. Data Coupling
	2. Stamp Coupling
	3. Control Coupling
	4. External Coupling
	5. Common Coupling
	6. Content Coupling
	7. Temporal Coupling
	8. Sequential Coupling
	9. Communicational Coupling
	10. Functional Coupling
	11. Data-Structured Couplng
	12. Interaction Coupling
	13. Component Coupling
	1. Functional Cohesion
	2. Sequential Cohesion
	3. Communicational Cohesion
	4. Procedural Cohesion
	5. Temporal Cohesion
	6. Logical Cohesion
	7. Coincidental Cohesion
	8. Informational Cohesion
	9. Layer Cohesion

