
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COURSE NAME : 23CSB101- OBJECT ORIENTED PROGRAMMING 

I YEAR /II SEMESTER

Unit II – INHERITANCE, PACKAGES AND INTERFACES

Topic : INTERFACE

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI



INTERFACE

An interface is a collection of method definitions (without implementations) and

constant values. It is a blueprint of a class. It has static constants and abstract

methods.

Three reasons to use interface.

It is used to achieve fully abstraction.

support multiple inheritance.

It can be used to achieve loose coupling.



INTERFACE

•An interface can contain any number of methods.

•Interface name is the name of file with a .java extension

•The bytecode of an interface appears in a .class file.

•Interfaces and bytecode file must be in same packages



INTERFACE
• Abstract Methods: An interface can contain abstract methods (methods without a

body). Any class that implements the interface must provide an implementation for

these methods.

• Multiple Inheritance: A class can implement multiple interfaces, which allows for

multiple inheritance of type (unlike classes, where Java allows only single

inheritance).

• Fields: All fields in an interface are public, static, and final by default, meaning they

are constants.

• Default Methods: default methods in interfaces, allow interfaces to have methods

with implementations. Classes that implement the interface can choose to override

these methods.

• Static Methods: static methods in interfaces belong to the interface itself, not to any

instance of the implementing class.



INTERFACE

[access_specifier] interface InterfaceName

{

Datatype VariableName1=value;

Datatype VariableName2=value;

.

.

Datatype VariableNameN=value;

returnType methodName1(parameter_list);

returnType methodName2(parameter_list);

.

.

returnType methodNameN(parameter_list);

}

Where,

Access_specifer :

either public or none.

Name:

name of an interface can be any valid java identifier.

Variables:

They are implicitly public, final and static, meaning

that they cannot be changed by the implementing

class. They must be initialized with a constant value.

Methods:

They are implicitly public and abstract, meaning that

they must be declared without body and defined only

by the implementing class.



INTERFACE

class TestInterface2

{

public static void main(String[] args)

{

Bank b=new SBI();

System.out.println("ROI: "+b.rateOfInterest());

}

}

interface Bank

{

float rateOfInterest();

}

class SBI implements Bank

{

public float rateOfInterest()

{

return 9.15f;

}

}

class PNB implements Bank

{

public float rateOfInterest()

{

return 9.7f;

}

}
ROI: 9.15



INTERFACE

Interface vs Abstract Class:

• An abstract class can have both abstract and concrete

methods, and it can have instance variables.

• An interface cannot have instance variables (it only has

constants), and all methods are abstract (except for default and

static methods).



INTERFACE

CATEGORY CLASS INTERFACE

Definition and 

Purpose

A class is a blueprint for creating objects An interface is a reference type

Keyword Declared using the class keyword.

class MyClass

Declared using the interface keyword.

interface MyInterface

Methods Contain both instance , abstract and

concrete and static methods.

Can have any access modifiers

Contain static, default and abstract methods

implicitly public and abstract

Fields/Variables Can have instance variables and any

access modifier

Implicitly public, static, and final, meaning they are

constants.

Inheritance Can inherit from only one other class Cannot inherit from a class.

Constructors Have multiple constructors (overloaded

constructors)

Do not have constructors

Instantiation Can be instantiated to create an object

using new

Cannot be instantiated directly.




