

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT 3-SERVER SIDE PROGRAMMING

3.1 SERVLET LIFE CYCLE

A servlet life cycle can be defined as the entire process from its

creation till the destruction. The following are the paths followed by a servlet.The

servlet is initialized by calling the init() method.

• The servlet calls service() method to process a client's request.

• The servlet is terminated by calling the destroy() method.

• Finally, servlet is garbage collected by the garbage collector of the JVM.

3.1.1 The init() Method

• The init method is called only once. It is called only when the servlet
is created, and not called for any user requests afterwards. So, it is
used for one-time initializations, just as with the init method of
applets.

• The servlet is normally created when a user first invokes a URL
corresponding to the servlet, but you can also specify that the servlet
be loaded when the server is first started.

• When a user invokes a servlet, a single instance of each servlet gets
created, with each user request resulting in a new thread that is
handed off to doGet or doPost as appropri- ate.

• The init() method simply creates or loads some data that will be used
throughout the life of the servlet.

• The init method

definition looks like this –

Public void init() throws

ServletException {

// Initialization code

}

3.1.2 The service() Method

• The service() method is the main method to perform the actual task.

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai

The servlet container (i.e. web server) calls the service() method

to handle requests coming from the client(browsers) and to write

the formatted response back to the client.

• Each time the server receives a request for a servlet, the server spawns a new
thread and

calls service.
• The service() method checks the HTTP request type (GET, POST,

PUT, DELETE, etc.) and calls doGet, doPost, doPut, doDelete, etc.

methods as appropriate.

• Here is the signature of this method −

public void service(ServletRequest request,

ServletResponse response) throws ServletException,

IOException {

}

• The service () method is called by the container and service method

invokes doGet, doPost, doPut, doDelete, etc. methods as appropriate.

So you have nothing to do with service() method but you override

either doGet() or doPost() depending on what type of request you

receive from the client.

• The doGet() and doPost() are most frequently used methods with in

each service request. Here is the signature of these two methods.

3.1.3 The doGet() Method

• A GET request results from a normal request for a URL or from an

HTML form that has no METHOD specified and it should be handled

by doGet() method.

public void doGet(HttpServletRequest request,

HttpServletResponse response) throws

ServletException, IOException {

// Servlet code

}

3.1.4 The doPost() Method

• A POST request results from an HTML form that specifically lists POST

as the METHOD and it should be handled by doPost() method.

public void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException,

IOException {

// Servlet code

}

3.1.5 The destroy() Method

• The destroy() method is called only once at the end of the life cycle of

a servlet. This method gives your servlet a chance to close database

connections, halt background threads, write cookie lists or hit counts

to disk, and perform other such cleanup activities.

• After the destroy() method is called, the servlet object is marked for
garbage collection.

The destroy method

definition looks like this − public

void destroy() {

// Finalization code...

}

3.1.6 Architecture Diagram

• The following figure depicts a typical servlet life-cycle scenario.
• First the HTTP requests coming to the server are delegated to the servlet

container.
• The servlet container loads the servlet before invoking the service() method.
• Then the servlet container handles multiple requests by spawning

multiple threads, each thread executing the service() method of a

single instance of the servlet.

Fig 3.2 Servlet Life Cycle

	3.1 SERVLET LIFE CYCLE
	3.1.1 The init() Method
	3.1.2 The service() Method
	3.1.3 The doGet() Method
	3.1.4 The doPost() Method
	3.1.5 The destroy() Method
	3.1.6 Architecture Diagram

