

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT 3-SERVER SIDE PROGRAMMING

3.4 SESSION HANDLING

➢ HTTP is a "stateless" protocol which means each time a client retrieves a Web page, the

client opens a separate connection to the Web server and the server automatically does not

keep any record of previous client request.

➢ Still there are following three ways to maintain session between web client and web server

3.4.1 Cookies

• A webserver can assign a unique session ID as a cookie to each web client and for subse-

quent requests from the client they can be recognized using the recieved cookie.

• This may not be an effective way because many time browser does not support a cookie, so

I would not recommend to use this procedure to maintain the sessions.

3.4.2 Hidden Form Fields

• A web server can send a hidden HTML form field along with a unique session ID as fol-

lows −

<input type = "hidden" name = "sessionid" value = "12345">

• This entry means that, when the form is submitted, the specified name and value are auto-

matically included in the GET or POST data. Each time when web browser sends request

back, then session_id value can be used to keep the track of different web browsers.

• This could be an effective way of keeping track of the session but clicking on a regular (<A

HREF...>) hypertext link does not result in a form submission, so hidden form fields also

cannot support general session tracking.

3.4.3 URL Rewriting

• You can append some extra data on the end of each URL that identifies the session, and the

server can associate that session identifier with data it has stored about that session.

• For example, with http://tutorialspoint.com/file.htm;sessionid = 12345, the session identifier

is attached as sessionid = 12345 which can be accessed at the web server to identify the

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai

http://tutorialspoint.com/file.htm%3Bsessionid

client.

• URL rewriting is a better way to maintain sessions and it works even when browsers don't

support cookies.

• The drawback of URL re-writing is that you would have to generate every URL dynamically

to assign a session ID, even in case of a simple static HTML page.

3.4.5 The HttpSession Object

• Apart from the above mentioned three ways, servlet provides HttpSession Interface which
provides a way to identify a user across more than one page request or visit to a Web site

and to store information about that user.

• The servlet container uses this interface to create a session between an HTTP client and
an HTTP server. The session persists for a specified time period, across more than one

connection or page request from the user.

• You would get HttpSession object by calling the public method getSession() of HttpServle-
tRequest, as below −

HttpSession session = request.getSession();

• request.getSession() before you send any document content to the client.

Session Tracking Example

• This example describes how to use the HttpSession object to find out the creation time
and the last-accessed time for a session. We would associate a new session with the re-

quest if one does not already exist.

// Import required java libraries

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

// Extend HttpServlet class

public class SessionTrack extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

// Create a session object if it is already not created.

HttpSession session = request.getSession(true);

// Get session creation time.

Date createTime = new Date(session.getCreationTime());

// Get last access time of this web page.

Date lastAccessTime = new Date(session.getLastAccessedTime());

String title = "Welcome Back to my website";

Integer visitCount = new Integer(0);

String visitCountKey = new String("visitCount");

String userIDKey = new String("userID");

String userID = new String("ABCD");

// Check if this is new comer on your web page.

if (session.isNew()) {

title = "Welcome to my website";

session.setAttribute(userIDKey, userID);

} else {

visitCount = (Integer)session.getAttribute(visitCountKey);

visitCount = visitCount + 1;

userID = (String)session.getAttribute(userIDKey);

}

session.setAttribute(visitCountKey, visitCount);

// Set response content type

response.setContentType("text/html");

PrintWriter out = response.getWriter();

 String docType =

"<!doctype html public \"-//w3c//dtd html 4.0 " +

"transitional//en\">\n";

out.println(docType +

"<html>\n" +

"<head><title>" + title + "</title></head>\n" +

"<body bgcolor = \"#f0f0f0\">\n" +

"<h1 align = \"center\">" + title + "</h1>\n" +

"<h2 align = \"center\">Session Infomation</h2>\n" +

"<table border = \"1\" align = \"center\">\n" +

"<tr bgcolor = \"#949494\">\n" +

" <th>Session info</th><th>value</th>

</tr>\n" +

"<tr>\n" +

" <td>id</td>\n" +

" <td>" + session.getId() + "</td>

</tr>\n" +

"<tr>\n" +

" <td>Creation Time</td>\n" +

" <td>" + createTime + " </td>

</tr>\n" +

"<tr>\n" +

" <td>Time of Last Access</td>\n" +

" <td>" + lastAccessTime + " </td>

</tr>\n" +

"<tr>\n" +

" <td>User ID</td>\n" +

" <td>" + userID + " </td>

</tr>\n" +

"<tr>\n" +

" <td>Number of visits</td>\n" +

" <td>" + visitCount + "</td>

</tr>\n" +

"</table>\n" +

"</body>

</html>"

);

}

3.4.6 Deleting Session Data

When you are done with a user's session data, you have several options

• Remove a particular attribute − You can call public void removeAttribute(String

name) method to delete the value associated with a particular key.

• Delete the whole session − You can call public void invalidate() method to discard an en-

tire session.

• Setting Session timeout − You can call public void setMaxInactiveInterval(int inter-

val) method to set the timeout for a session individually.

• Log the user out − The servers that support servlets 2.4, you can call logout to log the

client out of the Web server and invalidate all sessions belonging to all the users.

• web.xml Configuration − If you are using Tomcat, apart from the above mentioned meth-

ods, you can configure session time out in web.xml file as follows.

<session-config>

<session-timeout>15</session-timeout>

</session-config>

• The timeout is expressed as minutes, and overrides the default timeout which is 30 min- utes

in Tomcat.

• The getMaxInactiveInterval() method in a servlet returns the timeout period for that ses- sion

in seconds. So if your session is configured in web.xml for 15 minutes, getMaxInac-

tiveInterval() returns 900.

•

	3.4 SESSION HANDLING
	3.4.1 Cookies
	3.4.2 Hidden Form Fields
	<input type = "hidden" name = "sessionid" value = "12345">
	3.4.3 URL Rewriting
	3.4.5 The HttpSession Object
	HttpSession session = request.getSession();
	Session Tracking Example

