
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

 DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COURSE NAME : 23CSB101- OBJECT ORIENTED PROGRAMMING

I YEAR /II SEMESTER

Unit III – EXCEPTION HANDLING AND MULTITHREADING

Topic : EXCEPTION HANDLING

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

•An Exception is an event that occurs during program execution which disrupts the normal flow

of a program. It is an object which is thrown at runtime

•Exception handling is a mechanism that allows you to handle runtime errors and exceptional

conditions in a graceful manner, preventing the program from crashing. This is done using a

combination of try, catch, throw, throws, and finally blocks.

•All exceptions and errors extend from a common java.lang.Throwable parent class.

•The Throwable class is further divided into two classes:

1. Exceptions and

2. Errors.

EXCEPTION HANDLING

EXCEPTION HANDLING

EXCEPTION HANDLING

Some scenarios where an exception occurs.

• A user has entered an invalid data.

• A file that needs to be opened cannot be found.

• A network connection has been lost in the middle of communications or the JVM has run out

of memory.

Some of these exceptions are caused by user error, others by programmer error, and

others by physical resources that have failed in some manner

Errors: Errors represent internal errors of the Java run-time system which could not be

handled easily. Eg. OutOfMemoryError.

EXCEPTION HANDLING

S.No. Exception Error

1 Exceptions can be recovered Errors cannot be recovered

2 Exceptions are of type java.lang.Exception Errors are of type java.lang.Error

3 Exceptions can be classified into two types: a)
Checked Exceptions b) Unchecked Exceptions

There is no such classification for errors. Errors are always
unchecked.

4 In case of Checked Exceptions, compiler will have
knowledge of checked exceptions and force to keep
try…catch block. Unchecked Exceptions are not
known to compiler because they occur at run time.

In case of Errors, compiler won’t have knowledge of errors.
Because they happen at run time.

5 Exceptions are mainly caused by the application
itself.

Errors are mostly caused by the environment in which
application is running.

6 Examples:
Checked Exceptions: SQLException, IOException
Unchecked Exceptions:
ArrayIndexOutOfBoundsException,
NullPointerException

Examples: Java.lang.StackOverFlowError,
java.lang.OutOfMemoryError

DIFFERENCE BETWEEN EXCEPTION AND ERROR

Advantage of using Exceptions:

• Maintains the normal flow of execution of the application.

•Exceptions separate error handling code from regular code.

o Benefit:

• Cleaner algorithms, less clutter

• Meaningful Error reporting.

• Exceptions standardize error handling.

EXCEPTION HANDLING

S.No. Keyword Description

1 try A block of code that is to be monitored for exception

2 catch The catch block handles the specific type of exception along with
the try block. For each corresponding try block there exists the
catch block.

3 finally It specifies the code that must be executed even though exception
may or may not occur.

4 throw This keyword is used to explicitly throw specific exception from the
program code.

5 throws It specifies the exceptions that can be thrown by a particular
method.

EXCEPTION HANDLING KEYWORDS

try…catch block

• The try block is used to wrap the code that might throw an exception. If an exception occurs,

the control is transferred to the catch block.

• If an exception is generated within the try block, the remaining statements in the try block

are not executed

• The catch block is used to handle the exception.

try {

 int result = 10 / 0; // This will throw ArithmeticException

} catch (ArithmeticException e) {

 System.out.println("Error: Division by zero!"); }

EXCEPTION HANDLING

catch Block:

•Exceptions thrown during execution of the try block can be caught and handled in a catch

block.

•On exit from a catch block, normal execution continues and the finally block is executed.

 finally Block:

•A finally block is always executed, regardless of the cause of exit from the try block, or

whether any catch block was executed.

•Generally finally block is used for freeing resources, cleaning up, closing connections etc.

•Even though there is any exception in the try block, the statements assured by finally block

are sure to execute

EXCEPTION HANDLING

Syntax:

try {

 // Code block

}

catch (ExceptionType1 e1) {

 // Handle ExceptionType1 exceptions

}

catch (ExceptionType2 e2) {

 // Handle ExceptionType2 exceptions

}

// ...

finally {

 // Code always executed after the

 // try and any catch block

}

EXCEPTION HANDLING
public class Demo

{

 public static void main(String args[])

{

 try {

 int data=25/0;

 System.out.println(data);

 }

 catch(ArithmeticException e)

 {

 System.out.println(e);

 }

 finally {

 System.out.println("finally block is always executed");

 }

}

}

Example:Syntax:

java.lang.ArithmeticException: / by zero
finally block is always executed

• Multiple catch is used to handle many different kind of exceptions that may be

generated while running the program. i.e more than one catch clause in a single

try block can be used.

Rules:

1. At a time only one Exception can occur and at a time only one catch block is

executed.

2. All catch blocks must be ordered from most specific to most general i.e. catch

for ArithmeticException must come before catch for Exception.

Multiple catch blocks

try {

 // Code block

}

catch (ExceptionType1 e1) {

 // Handle ExceptionType1 exceptions

}

catch (ExceptionType2 e2) {

 // Handle ExceptionType2 exceptions

}

Multiple catch blocks

Multiple catch blocks

catch(ArrayIndexOutOfBoundsException e)

 {

 System.out.println("ArrayIndexOutOfBounds

Exception occurs");

 }

 catch(Exception e)

 {

 System.out.println("Parent Exception occurs");

 }

System.out.println("rest of the code"); }

 }

Multiple catch - Example

public class MultipleCatchBlock2 {

public static void main(String[] args) {

 try

{

 int a[]= {1,5,10,15,16};

 System.out.println("a[1] = "+a[1]);

 System.out.println("a[2]/a[3] = "+a[2]/a[3]);

 System.out.println("a[5] = "+a[5]);

 }

 catch(ArithmeticException e)

 {

 System.out.println("Arithmetic Exception occurs");

 }

a[1] = 5
a[2]/a[3] = 0
ArrayIndexOutOfBounds Exception occurs
rest of the code `

try block within a try block is known as nested try block

NESTED try BLOCK

throw statement:

• The throw statement is used to explicitly throw an exception. User can create their own exceptions or

re-throw an existing one. An exception can be thrown explicitly

 1. Using the throw statement

 2. Using the throws statement

The general format :

 throw <exception reference>;

Example:

 if (x < 18) {

 throw new ArithmeticException(“Not eligible");

}

THROWING AND CATCHING EXCEPTIONS

throws keyword:

• The throws keyword is used in method declarations to indicate that a method can throw one or more

exceptions. It does not handle the exception but delegates the responsibility to the caller of the

method.

Syntax:

public void someMethod() throws IOException {

 // Code that might throw an IOException }

Or

Return-type method_name(arg_list) throws exception_list

{ // method body }

THROWING AND CATCHING EXCEPTIONS

EXCEPTION HANDLING
public class ThrowsDemo

{

static void divide(int num, int din) throws ArithmeticException

{

int result=num/din;

System.out.println("Result : "+result);

}

public static void main(String args[])

{

int n = 10 ,d =0;

try

{

 divide(n,d);

}

catch(Exception e)

{

System.out.println(" Can't Handle : divide by zero ERROR");

}

}

}

Can't Handle : divide by zero ERROR **

Example: try…catch…finally

public class TrycatchExample

{

 public static void main(String[] args)

 {

 try {

 int[] numbers = {1, 2, 3};

 int result = numbers[5]; // This will throw ArrayIndexOutOfBoundsException

 int division = 10 / 0; // This will throw ArithmeticException

 }

 catch (ArrayIndexOutOfBoundsException e)

 { System.out.println("Array index out of bounds!"); }

 catch (ArithmeticException e)

 { System.out.println("Arithmetic error!"); }

 finally

 { System.out.println("This block runs no matter what");

 }

 }

 }

Example: throw

class ThrowExample {

 static void checkAge(int age) {

 if (age < 18) {

 throw new IllegalArgumentException("Age must be 18 or older.");

 } else {

 System.out.println("Access granted.");

 }

 }

 public static void main(String[] args) {

 checkAge(16); // This will throw an exception

 }

}

Exception in thread "main" java.lang.IllegalArgumentException: Age must be 18 or older.

EXCEPTION HANDLING

class AgeValidation {

 // Method that declares it may throw an exception

static void checkAge(int age) throws

IllegalArgumentException

 {

 if (age < 18)

 {

 throw new IllegalArgumentException("Age

 must be 18 or older.");

 }

else {

 System.out.println("Access granted.");

 }

 }

public static void main(String[] args) {

 try {

 checkAge(16);

// This will cause an exception

 }

catch (IllegalArgumentException e)

{

 System.out.println("Exception caught: " +

e.getMessage());

 }

 }

}

Difference between throw and throws

throw keyword throws keyword

throw is used to explicitly throw an exception throws is used to declare an exception.

checked exception cannot be propagated without
throws.

checked exception can be propagated with throws.

throw is followed by an instance throws is followed by class.

throw is used within the method. throws is used with the method signature

You cannot throw multiple exception You can declare multiple exception
e.g. public void method()throws IOException,SQLException.

EXCEPTION HANDLING

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

class IOExceptionExample {

 public static void main(String[] args) {

 try {

 // Attempt to read a non-existent file

 BufferedReader reader = new BufferedReader(new FileReader("non_existent_file.txt"));

 String line = reader.readLine();

 System.out.println(line);

 reader.close();

 } catch (IOException e) {

 System.out.println("Exception caught: " + e.getMessage());

 }

 }

}
Exception caught: non_existent_file.txt (No such file or directory)

EXCEPTION HANDLING

import java.io.*;

public class CheckedExceptionExample {

 public static void main(String[] args) {

 try (FileReader file = new FileReader("src/somefile.java")) {

// Try-with-resources (Auto-closes the file)

 System.out.println(file.toString());

// Note: This prints object reference, not file content

 } catch (FileNotFoundException e) {

 System.out.println("Sorry. File not found.");

 } catch (IOException e) {

// Handles any reading errors

 System.out.println("Error while reading the file.");

 }

 }

}

Sorry. File not found.

	Slide 1: SNS COLLEGE OF ENGINEERING
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: EXCEPTION HANDLING
	Slide 20: Example: try…catch…finally
	Slide 21: Example: throw
	Slide 22: EXCEPTION HANDLING
	Slide 23: Difference between throw and throws
	Slide 24: EXCEPTION HANDLING
	Slide 25: EXCEPTION HANDLING
	Slide 26

