
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

 DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COURSE NAME : 23CSB101- OBJECT ORIENTED PROGRAMMING

I YEAR /II SEMESTER

Unit III – EXCEPTION HANDLING AND MULTITHREADING

Topic : EXCEPTION HANDLING

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

•An Exception is an event that occurs during program execution which disrupts the normal flow

of a program. It is an object which is thrown at runtime

•Exception handling is a mechanism that allows you to handle runtime errors and exceptional

conditions in a graceful manner, preventing the program from crashing. This is done using a

combination of try, catch, throw, throws, and finally blocks.

•All exceptions and errors extend from a common java.lang.Throwable parent class.

•The Throwable class is further divided into two classes:

1. Exceptions and

2. Errors.

EXCEPTION HANDLING

EXCEPTION HANDLING

•Built-in exceptions are the exceptions which are available in Java libraries.

These exceptions are suitable to explain certain error situations.

•Exception types created by the user to describe the exceptions related to their

applications are known as User-defined Exceptions or Custom Exceptions.

USER DEFINED EXCEPTIONS

To create User-defined Exceptions:

1. Pick a self-describing *Exception class name.

2. Decide if the exception should be checked or unchecked.

 Checked : extends Exception

 Unchecked: extends RuntimeException

3. Define constructor(s) that call into super class constructor(s), taking message

that can be displayed when the exception is raised.

4. Write the code that might generate the defined exception inside the try-catch block

5. If the exception of user-defined type is generated, handle it using throw clause.

USER DEFINED EXCEPTIONS

To create User-defined Exceptions:

1. Pick a self-describing *Exception class name.

2. Decide if the exception should be checked or unchecked.

 Checked : extends Exception

 Unchecked: extends RuntimeException

3. Define constructor(s) that call into super class constructor(s), taking message

that can be displayed when the exception is raised.

4. Write the code that might generate the defined exception inside the try-catch block

5. If the exception of user-defined type is generated, handle it using throw clause.

throw ExceptionClassObject;

USER DEFINED EXCEPTIONS

To create User-defined Exceptions:

1. Pick a self-describing *Exception class name.

2. Decide if the exception should be checked or unchecked.

 Checked : extends Exception

 Unchecked: extends RuntimeException

3. Define constructor(s) that call into super class constructor(s), taking message

that can be displayed when the exception is raised.

4. Write the code that might generate the defined exception inside the try-catch block

5. If the exception of user-defined type is generated, handle it using throw clause.

throw ExceptionClassObject;

USER DEFINED EXCEPTIONS

public class EvenNoException extends Exception

{

 EvenNoException(String str)

 {

 super(str); // used to refer the superclass constructor

 }

 public static void main(String[] args)

 {

 int arr[]={2,3,4,5};

 int rem;

 int i;

 for(i=0;i<arr.length;i++)

 {

 rem=arr[i]%2;

 Cont…

USER DEFINED EXCEPTIONS

try

 {

 if(rem==0)

 {

 System.out.println(arr[i]+" is an Even Number");

 }

 else

 {

 EvenNoException exp=new EvenNoException(arr[i]+" is not an Even Number");

 throw exp;

 } Cont…

USER DEFINED EXCEPTIONS

}

 catch(EvenNoException exp)

 {

 System.out.println("Exception thrown is "+exp);

 }

 } // for loop

 } // main()

} // class

USER DEFINED EXCEPTIONS

2 is an Even Number

Exception thrown is EvenNoException: 3 is not an Even Number

4 is an Even Number

Exception thrown is EvenNoException: 5 is not an Even Number

Comparison – final-finally-finalize
Basis for

compariso
n

final finally Finalize

Basic final is a "Keyword" and "access modifier"
in Java.

finally is a "block" in Java. finalize is a "method" in
Java.

Applicable final is a keyword applicable to classes,
variables and methods.

finally is a block that is always
associated with try and catch
block.

finalize() is a method
applicable to objects.

Working (1) final variable becomes constant, and
it can't be reassigned.

(2) A final method can't be overridden by
the child class.

(3) final Class can not be extended.

A "finally" block, clean up the
resources used in "try" block.

Finalize method performs
cleans up activities related
to the object before its
destruction.

Execution final method is executed upon its call. “finally" block executes just
after the execution of
"try…catch" block.

finalize() method executes
just before the destruction
of the object.

Comparison – final-finally-finalize
Basis for

compariso
n

final finally Finalize

Example class FinalExample
{ public static void main(String[] args)
{
 final int x=100;
 x=200;
//Compile Time Error }}

class FinallyExample
{
public static void main(String[] args)
{
try
{ int x=300; }
catch(Exception e)
{ System.out.println (e); }
finally
{ System.out.println("finally block is
executed");
}
}
}

class FinalizeExample
{ public void finalize()
{
System.out.println("finalize called");
}
public static void main(String[] args) {
FinalizeExample f1=new
FinalizeExample();
FinalizeExample f2=new
FinalizeExample();
f1=null;
f2=null;
System.gc(); //garbage collection
}
}

Avoid finalize()?

 Unreliable: No guarantee when (or if) it runs.

 Deprecated: Not recommended in Java 9+.

 Better Alternatives: Use try-with-resources (AutoCloseable interface) for

proper cleanup.

• catch block is not mandatory if you use a finally block or try-with-resources.

• Recommended: Always use catch or throws to handle exceptions properly.

import java.io.*;

class ResourceExample implements AutoCloseable
 {
 public void show()
 {
 System.out.println("Using resource...");
 }

 @Override
 public void close()
 {
 System.out.println("Resource closed.");
 }
}

public class TryWithResourcesExample
{
 public static void main(String[] args)
{
 try
 (
 ResourceExample res = new ResourceExample()
)
 {
 res.show();
 } // `close()` is automatically called here
 }
}

Example: try-with-resources

Example: try-with-resources

Lab Program
Implement exception handling and creation of user defined exceptions.

import java.io.*;

import java.util.*;

class MyException extends Exception

{

private int d;

MyException (int a)

{

 d = a;

}

public String toString()

{

return "MyException [" + d + "]";

}

}

Cont…

Lab Program
class UserException
 {
 static void compute(int a) throws MyException
 {

 System.out.println ("Called Compute(" + a + ")");

 if(a>10)

 Throw new MyException(a); System.out.println ("Normal Exit");

 public static void main(String args[])

 {
 try
 {

 compute(1);

 compute(20);
 }
 catch(MyException e)
 {
 System.out.println("Caught " + e); }

 }
 }

Called Compute(1)

Normal Exit

Called Compute(20)

Caught MyException [20]

	Slide 1: SNS COLLEGE OF ENGINEERING
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Lab Program Implement exception handling and creation of user defined exceptions.
	Slide 17: Lab Program
	Slide 18

