
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department Of Artificial Intelligence and Data
Science

Course Code & Name –23ITB203 & Operating
Systems

II Year / IV Semester

Unit 2 - PROCESS SYNCHRONIZATION - THE
CRITICAL-SECTION PROBLEM -SYNCHRONIZATION

HARDWARE 1

Process Synchronization / Priyadharshini S / AP – AI&DS / SNS Institutions

28-Mar-25

28-Mar-25 2

A cooperating process is one that can affect or be affected by other processes executing in

the system.

Cooperating processes can either

Process Synchronization

Directly share a logical address space Allowed to share data only through
files or messages

Concurrent access to shared data may result in data inconsistency!

The orderly execution of cooperating processes that share a logical address space, so
that data consistency is maintained

Suppose that we wanted to provide a solution to the consumer-producer problem
that fills all the buffers. We can do so by having an integer count that keeps track of
the number of full buffers. Initially, count is set to 0. It is incremented by the producer
after it produces a new buffer and is decremented by the consumer after it consumes
a buffer.

Process Synchronization / Priyadharshini S / AP – AI&DS / SNS Institutions

28-Mar-25 3

Counter variable = 0

Counter is incremented every time we add a new item to the buffer counter++

Counter is decremented every time we remove a new item from the buffer counter- -

Example:

• Suppose that the value of the variable counter is currently 5

• The producer and consumer processes execute the statements “counter++” and “counter- -”

concurrently.

• Following the execution of these two statements, the value of the variable counter may be 4,5,6

• The only correct result, though, is counter ==5, which is generated correctly if the producer and

consumer execute separately.

Process Synchronization / Priyadharshini S / AP – AI&DS / SNS Institutions

28-Mar-25 4

“counter++” may be implemented in machine language (on a typical machine) as:
register1 = counter
register1 = register1 +1
counter = register1

“counter—” may be implemented in machine language (on a typical machine) as
register2 = counter
register2 = register1 -1
counter = register2

We would arrive at the this incorrect state because we allowed both processes to manipulate the variable
counter concurrently.
A situation like this, where several processes access and manipulate the same data concurrently and the
outcome of the execution depends on the particular order in which the access takes place, is called a race
condition.

Clearly we want the resulting changes not to interfere with one another. Hence we need process
synchronization

T0 producer execute register1 = counter {register1 = 5}

T1
T2

producer
consumer

execute
execute

register1 = register1 + 1
register2 = counter

{register1 = 6}
{register2 = 5}

T3
T4

consumer
producer

execute
execute

register2 = register2 - 1
counter = register1

{register2 = 4}
{counter = 6}

T5 Consumer Execute counter = register2 {counter = 4}

28-Mar-25 5

The Critical – Section Problem

Consider a system consisting of n processes { P0 , P1, …, Pn}.

Each process has a segment of code, called a

In which the process may be changing common variables, updating a table, writing a file, and so

on.

When one process is executing in its critical section, no other process is to be allowed to execute

in its critical section.

That is, no two processes are executing in their critical sections at the same time.

The critical –section problem is to design a protocol that the processes can use to

cooperate.

Critical Section

28-Mar-25 6

• Each process must request permission to enter its critical section

• The section of code implementing this request is the entry section

• The critical section may be followed by an exit section

• The remaining code is the remainder section.

do {

entry section

Critical section

exit section

remainder section

} while (TRUE)

Figure: General structure of a typical process.

28-Mar-25 7

• Each process must request permission to enter its critical section

• The section of code implementing this request is the entry section

• The critical section may be followed by an exit section

• The remaining code is the remainder section.

do {

entry section

Critical section

exit section

remainder section

} while (TRUE)

Figure: General structure of a typical process.

28-Mar-25 8

Peterson’s Solution

• A classic software – based solution to the critical – section problem

• May not work correctly on modern computer architectures

• However, if provides a good algorithmic description of solving the critical- section problem and

illustrates some of the complexities involved in designing software that addresses the

requirements of mutual exclusion, progress, and bounded waiting requirements.

Peterson’s solution is restricted to two processes that alternate execution between their critical

sections and remainder sections. Lets call the processes and Pi Pj

28-Mar-25 9

Peterson’s solution requires two data items to be shared between the two processes

int turn

Indicates whose turn it is to
enter its critical section

boolean flag [2]

Used to indicate if a process is ready
to enter its critical section

Structure of a process Pi in Peterson’s solution

do {

flag [i] =true;
turn = j;
while (flag[j] && turn == [j]);

Critical section

flag[i[= false;

remainder section

} while (TRUE);

Structure of a process Pj Peterson’s solution

do {

flag [j] =true;
turn = i;
while (flag[i] && turn == [i]);

Critical section

flag[j[= false;

remainder section

} while (TRUE);

28-Mar-25 10

Test and Set Lock

• A hardware solution to the synchronization problem.

• There is a shared lock variable which can take either of the two values 0 or 1.

• Before entering into the critical section, a process inquires about the lock.

• If it is locked, it keeps on waiting till it becomes free

• If it is not locked, it takes the lock and executes the critical problem

28-Mar-25 11

boolean TestandSet (Boolean *target){
boolean rv = *target;
*target = TRUE;
Return rv;
}

ATOMIC OPERATIONS

The definition of the TestandSet() instruction

do{

While

(TestandSetLock(&lock));

//do nothing

//critical section

Lock=FALSE;

//remainder section

} while (TRUE);

do{

While

(TestandSetLock(&lock));

//do nothing

//critical section

Lock=FALSE;

//remainder section

} while (TRUE);

Process 1 Process 2

Satisfies mutual exclusion.
Doesn’t satisfy bounded-waiting

