
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

 DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COURSE NAME : 23CSB101- OBJECT ORIENTED PROGRAMMING

I YEAR /II SEMESTER

Unit III – EXCEPTION HANDLING AND MULTITHREADING

Topic : PRIORITIES – SYNCHRONIZATION

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Thread

• A thread is a lightweight sub-process that defines a separate path of

execution. It is the smallest unit of processing that can run concurrently

with other threads of the same process.

• Multithreading is a technique of executing more than one thread,

performing different tasks, simultaneously.

• Multitasking is a process of executing multiple tasks simultaneously. It

is used to maximize CPU utilization.

• Process: Process is a heavy weight program. Each process has a

complete set of its own variables. Use IPC to communicate between

processes.

THE “main” THREAD

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

• The “main” thread is a thread that begins running immediately

when a java program starts up.

• The “main” thread is important for two reasons:

1. It is the thread form which other child threads will be spawned.

2. It must be the last thread to finish execution because it

performs various shutdown actions.

• Although the main thread is created automatically when our

program is started, it can be controlled through a Thread object

for which a reference to it is done by calling the method

currentThread().

Example

class CurrentThreadDemo {

public static void main(String args[])

{ Thread t=Thread.currentThread();

System.out.println(“Current Thread: “+t);

// change the name of the main thread

t.setName(“My Thread”);

System.out.println(“After name change : “+t);

try {

for(int n=5;n>0;n--) {

System.out.println(n);

Thread.sleep(1000);// delay for 1 second

} Cont…

Example

} catch(InterruptedException e) {

 System.out.println(“Main Thread Interrrupted”);

 }

}

}

Output:
Current Thread: Thread[main,5,main]
After name change: Thread[My Thread,5,main]
5
4
3
2
1

Creating Threads

Threads are created by instantiating an object of type Thread.
Java defines two ways to create threads:

1. By implementing Runnable interface (java.lang.Runnable)
2. By extending the Thread class (java.lang.Thread)

Creating threads by implementing Runnable interface:

• The Runnable interface should be implemented by any class whose
instances are intended to be executed as a thread.

• Implementing thread program using Runnable is preferable than
implementing it by extending Thread class because of the following two
reasons:

1. If a class extends a Thread class, then it cannot extend any other class.

2. If a class Thread is extended, then all its functionalities get inherited.
This is an expensive operation.

Cont…

Creating threads by implementing Runnable interface:

• The Runnable interface has only one method that must be overridden
by the class which implements this interface:

 public void run() // run() contains the logic of the thread

 {

 // implementation code

 }

Creating threads by implementing Runnable interface:

Steps for thread creation:

1. Create a class that implements Runnable interface. An object of this class is
Runnable object.

 public class MyThread implements Runnable

 { -------------------- }

2. Override the run() method to define the code executed by the thread.

3. Create an object of type Thread by passing a Runnable object as argument.

 Thread t=new Thread(Runnable threadobj, String threadName);

4. Invoke the start() method on the instance of the Thread class.

 t.start();

Creating threads by implementing Runnable interface:

class MyThread implements Runnable

{

public void run()

{

for(int i=0;i<3;i++)

{

System.out.println(Thread.currentThread().getName()+" # Printing "+i);

try

{

Thread.sleep(1000);

} Cont…

Creating threads by implementing Runnable interface:

catch(InterruptedException e)

{

System.out.println(e);

 }

 }

}

}

public class RunnableDemo {

public static void main(String[] args)

{

MyThread obj=new MyThread();

MyThread obj1=new MyThread();

Thread t=new Thread(obj,"Thread-1");

t.start();

Thread t1=new Thread(obj1,"Thread-
2");

t1.start();

}

}

Creating threads by implementing Runnable interface:

Output:

Thread-0 # Printing 0

Thread-1 # Printing 0

Thread-1 # Printing 1

Thread-0 # Printing 1

Thread-1 # Printing 2

Thread-0 # Printing 2

Creating threads by extending Thread class

• Thread class provide constructors and methods to create and
perform operations on a thread.

• Commonly used Constructors of Thread class to create a new
Thread:

1. Thread()
2. Thread(String name)
3. Thread(Runnable r)
4. Thread(Runnable r, String name)

Creating threads by extending Thread class

Commonly used methods of Thread class:

1. public void run(): is used to perform action for a thread.

2. public void start(): starts the execution of the thread.JVM calls the run()
method on the thread.

3. public void sleep(long miliseconds): Causes the currently executing
thread to sleep (temporarily cease execution) for the specified number of
milliseconds.

4. public void join(): waits for a thread to die.

5. public void join(long miliseconds): waits for a thread to die for the
specified miliseconds.

6. public int getPriority(): returns the priority of the thread.

7. public int setPriority(int priority): changes the priority of the thread.

Creating threads by extending Thread class

Commonly used methods of Thread class:

8. public String getName(): returns the name of the thread.

9. public void setName(String name): changes the name of the thread.

10.public Thread currentThread(): returns the reference of currently executing
thread.

11.public boolean isAlive(): tests if the thread is alive.

12.public void yield(): causes the currently executing thread object to
temporarily pause and allow other threads to execute.

13.public void suspend(): is used to suspend the thread(depricated).

Creating threads by extending Thread class

Commonly used methods of Thread class:

14.public void resume(): is used to resume the suspended thread(depricated).

15.public void stop(): is used to stop the thread(depricated).

16.public boolean isDaemon(): tests if the thread is a daemon thread.

17.public void setDaemon(boolean b): marks the thread as daemon or user
thread.

18.public void interrupt(): interrupts the thread.

19.public boolean isInterrupted(): tests if the thread has been interrupted.

20.public static boolean interrupted(): tests if the current thread has been
interrupted.

Creating threads by extending Thread class

Steps for thread creation:

1. Create a class that extends java.lang.Thread class.

 public class MyThread extends Thread

 { --- }

2. Override the run() method in the sub class to define the code executed by
the thread.

3. Create an object of this sub class.

 MyThread t=new MyThread(String threadName);

4. Invoke the start() method on the instance of the subclass to make the thread

for running.

 start();

Creating threads by extending Thread class

class SampleThread extends Thread
{
 public void run()
 {
 for(int i=0;i<3;i++)
 {
 System.out.println(Thread.currentThread().getName()+" # Printing "+i);
 try
 {
 Thread.sleep(1000);
 }
 catch(InterruptedException e)
 { System.out.println(e); }
 }
 }
}

CONT…

Creating threads by extending Thread class

public class ThreadDemo

{

public static void main(String[] args)

{

SampleThread obj=new SampleThread();

obj.start();

SampleThread obj1=new SampleThread();

obj1.start();

}

}

Output:
Thread-0 # Printing 0
Thread-1 # Printing 0
Thread-1 # Printing 1
Thread-0 # Printing 1
Thread-0 # Printing 2
Thread-1 # Printing 2

THREAD PRIORITY

• Thread priority determines how a thread should be treated with respect to

others.

• Every thread in java has some priority, it may be default priority generated by

JVM or customized priority provided by programmer.

• Priorities are represented by a number between 1 and 10.

1 – Minimum Priority5 – Normal Priority 10 – Maximum Priority

• Thread scheduler will use priorities while allocating processor. The thread

which is having highest priority will get the chance first.

THREAD PRIORITY

Three constants defined in Thread class:

1.public static int MIN_PRIORITY

2.public static int NORM_PRIORITY

3.public static int MAX_PRIORITY

 Default priority of a thread is 5 (NORM_PRIORITY).

 The value of MIN_PRIORITY is 1

 and the value of MAX_PRIORITY is 10.

THREAD PRIORITY

Three constants defined in Thread class:

1.public static int MIN_PRIORITY

2.public static int NORM_PRIORITY

3.public static int MAX_PRIORITY

 Default priority of a thread is 5 (NORM_PRIORITY).

 The value of MIN_PRIORITY is 1

 and the value of MAX_PRIORITY is 10.

To set a thread’s priority, setPriority() and to get the current priority

getPriority() method is used.

Example: THREAD PRIORITY
class TestMultiPriority1 extends Thread{

public void run(){

 System.out.println("running thread name is:"+Thread.currentThread().getName());

 System.out.println("running thread priority is:"+ Thread.currentThread().getPriority());

 }

public static void main(String args[]) {

 TestMultiPriority1 m1=new TestMultiPriority1();

 TestMultiPriority1 m2=new TestMultiPriority1();

 m1.setPriority(Thread.MIN_PRIORITY);

 m2.setPriority(Thread.MAX_PRIORITY);

 m1.start();

 m2.start();

}

}

running thread name is:Thread-0
 running thread priority is:10
 running thread name is:Thread-1
 running thread priority is:1

Thread Synchronization

• Thread synchronization is the concurrent execution of two or more

threads that share critical resources.

• When two or more threads need to use a shared resource, they need

some way to ensure that the resource will be used by only one

thread at a time. The process of ensuring single thread access to a

shared resource at a time is called synchronization.

Thread Synchronization

• There are two types of thread synchronization mutual exclusive and inter-

thread communication.

1. Mutual Exclusive

 1. Synchronized method.

 2. Synchronized block.

 3. static synchronization.

2. Cooperation (Inter-thread communication in java)

Thread Synchronization - Mutual Exclusive

1. Synchronized method.

Syntax :

 Access_modifier synchronized return_type method_name(parameters)

 { …….. }

2. Synchronized block in java

Syntax:

synchronized (object reference expression)

{

 //code block

}

class SharedResource {

 // Synchronized method (locks the entire method)

 synchronized void synchronizedMethod(String msg) {

 System.out.print("[" + msg);

 try { Thread.sleep(1000); } catch (InterruptedException e) { }

 System.out.println("]");

 }

 // Method using a synchronized block (locks only critical section)

 void synchronizedBlock(String msg) {

 System.out.print("Start ");

 synchronized (this) { // Only this block is synchronized

 System.out.print("[" + msg);

Cont…

try { Thread.sleep(1000); } catch (InterruptedException e) { }

 System.out.println("]"); }

 System.out.println("End"); }

}

class SyncExample {

 public static void main(String[] args) {

 SharedResource resource = new SharedResource();

 // Using threads to demonstrate synchronization

 Thread t1 = new Thread(() -> resource.synchronizedMethod("Hello"));

 Thread t2 = new Thread(() -> resource.synchronizedBlock("World"));

 t1.start();

 t2.start();

 }

}

Order may vary
[Hello]
Start [World]
End

`

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

	Slide 1: SNS COLLEGE OF ENGINEERING
	Slide 2: Thread
	Slide 3
	Slide 4: THE “main” THREAD
	Slide 5: Example
	Slide 6: Example
	Slide 7: Creating Threads
	Slide 8: Creating threads by implementing Runnable interface:
	Slide 9: Creating threads by implementing Runnable interface:
	Slide 10: Creating threads by implementing Runnable interface:
	Slide 11: Creating threads by implementing Runnable interface:
	Slide 12: Creating threads by implementing Runnable interface:
	Slide 13: Creating threads by implementing Runnable interface:
	Slide 14: Creating threads by extending Thread class
	Slide 15: Creating threads by extending Thread class
	Slide 16: Creating threads by extending Thread class
	Slide 17: Creating threads by extending Thread class
	Slide 18: Creating threads by extending Thread class
	Slide 19: Creating threads by extending Thread class
	Slide 20: Creating threads by extending Thread class
	Slide 21: THREAD PRIORITY
	Slide 22: THREAD PRIORITY
	Slide 23: THREAD PRIORITY
	Slide 24: Example: THREAD PRIORITY
	Slide 25: Thread Synchronization
	Slide 26: Thread Synchronization
	Slide 27: Thread Synchronization - Mutual Exclusive
	Slide 28
	Slide 29
	Slide 30
	Slide 31: `

