
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

An Autonomous Institution
Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna
University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY
Course Code and Name : 19TS601 FULL STACK DEVELOPMENT

Unit 3 : NODEJS AND EXPRESS
Topic : EXPRESS –ROUTING-HANDLER FUNCTION

1NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS31-03-2025

What is Express.js?

31-03-2025 2
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Express.js is a streamlined web application framework for Node.js
designed to facilitate the creation of web applications and APIs.

• It extends Node.js's core features, providing a structured approach to
managing server-side logic.

• Known for its minimalistic approach, Express offers essential web
application functionalities by default and enables developers to
extend its features with middleware and plugins.

Features of Express.js

31-03-2025 3
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Middleware

• Routing

• Template Engines

• Extensibility

• Performance

Features of Express.js

31-03-2025 4
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Middleware: Middleware is essential in Express.

• It allows you to modify request and response objects, add processing
logic, and handle errors effectively.

• Routing: Express offers a powerful routing mechanism to define
application endpoints and handle various HTTP methods (GET, POST,
PUT, DELETE, etc.).

• This feature simplifies the process of building RESTful APIs.

Features of Express.js

31-03-2025 5
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Template Engines: Express supports various templating engines, such
as Pug, EJS, and Handlebars.

• These engines enable you to generate dynamic HTML content on the
server side.

• Extensibility: Express is highly extensible and can be integrated with
numerous third-party libraries and tools.

• This flexibility allows you to easily add features like authentication,
validation, and logging.

• Performance: Built on Node.js's asynchronous, non-blocking
architecture, Express performs well when handling multiple
simultaneous connections.

Why Use Express.js?

31-03-2025 6
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Simplicity: Express abstracts the complexities of Node.js, helping
developers build applications more quickly and with less code.

• Flexibility: Express's unopinionated nature allows you to structure
your application as you see fit without imposing rigid conventions.

• Community Support: Express has a large and active community that
provides numerous resources, tutorials, and third-party middleware
to expand its capabilities.

• Scalability: Express is suitable for small-scale projects and large
enterprise applications. It is versatile and can handle a wide range of
use cases.

Routing

31-03-2025 7
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Routing in Express.js defines URL patterns (endpoints) and links them
with specific actions or resources within your web application.

• It allows users to navigate your application based on URLs. Express
uses the app object to define routes.

Syntax:

app.METHOD(PATH, HANDLER)

31-03-2025 8
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Each route consists of three parts:

METHOD:

• Specifies the HTTP request method.

• Common methods include GET, POST, PUT, DELETE, etc.

PATH:

• Defines the URL pattern for the route. (e.g., /about, /contact).

HANDLER:

• The function that is executed when a route is matched.

• It typically sends a response back to the client.

Basic Routing with GET Requests

31-03-2025 9
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Basic routing with GET requests:

const express = require('express'); // Import express module

const app = express(); // Create express app

const port = 3000; // Define port

// Define a route for the root URL ('/') with a GET request method

app.get('/', (req, res) => {

// Send a response to the client

res.send('Welcome to the Home Page!');

});

31-03-2025 10
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

// Define a route for the '/about' URL with a GET request method

app.get('/about', (req, res) => {

// Send a response to the client

res.send('About Us');

});

// Define a route for the '/contact' URL with a GET request method

app.get('/contact', (req, res) => {

// Send a response to the client

res.send('Contact Us');

});

31-03-2025 11
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

// Start server

app.listen(port, () => console.log(`Server is running at
http://localhost:${port}`));

31-03-2025 12
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Explanation:

• The root route (/) handles GET requests for the root URL. When a
request is received at this URL, the handler function sends 'Welcome
to the Home Page!' as a response.

• The about route (/about) handles GET requests for the /about URL.
When a GET request is made to /about, the handler function sends
'About Us' as a response.

• The contact route (/contact) handles GET requests for
the /contact URL. When a request is received at this URL, the handler
function sends 'Contact Us' as a response.

Route Parameters in Express.js

31-03-2025 13
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• In Express.js, route parameters are parts of the URL defined to
capture dynamic values.

• These parameters are specified in the route path by prefixing a colon
(:) before the parameter name.

• When a request is made to a route that includes parameters,
Express.js extracts these values and makes them available in the
req.params object.

Implementing Route Parameters in Express.js

31-03-2025 14
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• To define a route with parameters, use a colon (:) before the
parameter name in the route path.

single route parameter: Example:

Copy Codeconst express = require('express');

const app = express();

// Define a route with a route parameter

app.get('/users/:userId', (req, res) => {

// Access the route parameter value

const userId = req.params.userId;

res.send(`User ID: ${userId}`);

});

31-03-2025 15
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• // Start the server

• app.listen(3000, () => {

• console.log('The server is running on port: 3000');

• });

• In the above example, when a user visits /users/1001, the application
responds with "User ID: 1001". The req.params.userId retrieves the
value from the URL and makes it available within the route handler.

Multiple Route Parameters

• Multiple parameters in a single route by separating them with
slashes.

31-03-2025 16
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Example:

app.get('/users/:userId/posts/:postId', (req, res) => {

const userId = req.params.userId;

const postId = req.params.postId;

res.send(`User ID: ${userId}, Post ID: ${postId}`);

});

In the above example, visiting /users/1001/posts/2001 would respond
with "User ID: 1001, Post ID: 2001".

Handling Optional Route Parameters

• There may be cases where a route parameter is not always required.

• Express.js supports optional route parameters by appending a
question mark (?) to the parameter name.

31-03-2025 17
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Example:

app.get('/users/:userId/posts/:postId?', (req, res) => {

const userId = req.params.userId;

const postId = req.params.postId ? req.params.postId : 'No post ID
provided';

res.send(`User ID: ${userId}, Post ID: ${postId}`);

});

In the above example, visiting /users/1001/posts will respond with
"User ID: 1001, Post ID: No post ID provided", while visiting
/users/1001/posts/2001 will respond with "User ID: 1001, Post ID:
2001".

31-03-2025 18
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Using Regular Expressions with Route Parameters

• Express.js also provides the facility to use regular expressions to
define more flexible routes.

• This feature is particularly useful for validating the format of
parameters. For Example:

app.get('/category/:categoryName([a-zA-Z]+)', (req, res) => {

const categoryName = req.params.categoryName;

res.send(`Category: ${categoryName}`);

});

• In the above example, the route /category/:categoryName ensures
that the categoryName parameter contains only alphabetic
characters.

31-03-2025 19
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• In Express.js, route handlers are a core feature that allows developers
to define the behavior for specific HTTP requests.

• When building web applications, it's crucial to handle requests
efficiently. Route handlers provide a way to map different request
URLs and methods (such as GET, POST, PUT, and DELETE) to specific
functions.

Route Handlers

31-03-2025 20
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• An Express.js route handler is a function that determines how the
application responds to client requests at a particular endpoint.

• The endpoint is defined by a URL path and an HTTP method (GET,
POST, PUT, DELETE, etc.).

31-03-2025 21
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Defining Routes for Different HTTP Methods

• Express.js allows you to define route handlers for various HTTP
methods. Below are examples of handling common HTTP requests
like GET, POST, PUT, and DELETE.

• Handling GET Requests

• You use a GET request to retrieve data from the server. Here's an
example of how to handle a GET request in Express.

31-03-2025 22
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Example:

// app.js

const express = require('express');

const app = express();

app.get('/', (req, res) => {

res.send('Welcome to the homepage!');

});

app.get('/users', (req, res) => {

// Simulate fetching user data

const users = [{ id: 1, name: 'Alex' }, { id: 2, name: 'Jane' }];

res.json(users);

31-03-2025 23
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

app.listen(3000, () => {

console.log('Server is running on port 3000');

});

• In this example, the root route (/) responds with a welcome message,
and /users responds with a list of users in JSON format.

31-03-2025 24
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Handling POST Requests

• The POST method sends data to the server, typically when creating a
new record. app.js

app.use(express.json()); // To parse JSON bodies

app.post('/users', (req, res) => {

const newUser = req.body;

// Simulate adding a new user

res.status(201).send(`New user ${newUser.name} added
successfully.`);

31-03-2025 25
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• In the above code, the server accepts a new user record sent in the
request body and responds with a confirmation message.

Handling PUT Requests

• A PUT request to update existing data.

• The following example uses a route parameter (:id) to identify the
user's record that needs updating.

31-03-2025 26
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Example:

• // app.js

• app.put('/users/:id', (req, res) => {

• const userId = req.params.id;

• const updatedData = req.body;

• // Simulate updating user data

• res.send(`User record with ID: ${userId} updated successfully.`);

• });

• In the above example, the route /users/:id allows the client to update
a specific user's data based on the id parameter.

31-03-2025 27
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Handling DELETE Requests

• DELETE requests remove data from the server. Here's how you handle
a DELETE request in Express.

• Example:app.js

app.delete('/users/:id', (req, res) => {

const userId = req.params.id;

// Simulate deleting user data

res.send(`User record with ID: ${userId} deleted successfully.`);

});

In the above example, the server handles deleting a user's record
identified by the id parameter.

Chaining Route Handlers

31-03-2025 28
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• In Express.js, you can chain route handlers for the same path but with
different HTTP methods.

• This method eliminates redundancy when defining routes for similar
paths. Using app.route(), you can group multiple methods (GET, POST,
PUT) for a single endpoint, keeping the code clean and easy to
manage.

• Example:

31-03-2025 29
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

app.js

app.route('/user')

.get((req, res) => {

// Fetch user data

res.send('Fetching user data');

})

.post((req, res) => {

// Add a new user

res.send('New user created');

})

.put((req, res) => {

// Update user data

res.send('User data updated');

});

The above example /user route responds to GET, POST, and PUT requests in a streamlined manner.

Middleware

31-03-2025 30
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Middleware functions are the building blocks of any web server,
especially in frameworks like ExpressJS.

• It plays a vital role in the request-response cycle.

• They are functions that have access to the request object (req), the
response object (res), and the next function in the application’s
request-response cycle.

What is Middleware in Express?

31-03-2025 31
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Middleware in Express refers to functions that process requests
before reaching the route handlers.

• These functions can modify request and response objects, end the
request-response cycle, or call the next middleware function.

• Middleware functions are executed in the order they are defined.

• They can perform tasks like authentication, logging, or error handling.

• Middleware helps separate concerns and manage complex routes
efficiently.

31-03-2025 32
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

31-03-2025 33
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Syntax

app.use((req, res, next) => {

console.log('Middleware executed');

next();

});

31-03-2025 34
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• (req, res, next) => {}: This is the middleware function where you can
perform actions on the request and response objects before the final
handler is executed.

• next(): This function is called to pass control to the next middleware
in the stack if the current one doesn’t end the request-response
cycle.

Middleware Works in Express.js

31-03-2025 35
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• In Express.js, middleware functions are executed sequentially in the
order they are added to the application.

• When a request is received, it is passed through the middleware
functions in the order they were defined.

• Each middleware can perform a task and either send a response or
call the next() function to pass control to the next middleware
function.

31-03-2025 36
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Request arrives at the server.

• Middleware functions are applied to the request, one by one.

• Each middleware can either:

• Send a response and end the request-response cycle.

• Call next() to pass control to the next middleware.

• If no middleware ends the cycle, the route handler is reached, and a
final response is sent.

31-03-2025 37
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• ExpressJS offers different types of middleware :

• Application-level middleware: Bound to the entire application using
app.use() or app.METHOD() and executes for all routes.

• Router-level middleware: Associated with specific routes using
router.use() or router.METHOD() and executes for routes defined
within that router.

• Error-handling middleware: Handles errors during the request-
response cycle. Defined with four parameters (err, req, res, next).

• Built-in middleware: Provided by Express (e.g., express.static,
ExpressJSon, etc.).

• Third-party middleware: Developed by external packages (e.g., body-
parser, morgan, etc.).

Types of Middleware

Advantages of using Middleware

31-03-2025 38
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Modularity: Breaks down complex tasks into smaller, manageable
functions.

• Reusability: Middleware functions can be reused across different
routes or applications.

• Maintainability: Organizes code logically, making it easier to manage
and update.

• Error Handling: Centralizes error handling, improving the application’s
robustness.

• Performance Optimization: Allows for tasks like caching,
compression, and security checks to be handled efficiently.

Middleware Chaining

31-03-2025 39
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Middleware can be chained from one to another, Hence creating a
chain of functions that are executed in order. The last function sends
the response back to the browser. So, before sending the response
back to the browser the different middleware processes the request.

• The next() function in the express is responsible for calling the next
middleware function if there is one.

• Modified requests will be available to each middleware via the next
function

•

https://www.geeksforgeeks.org/what-is-the-use-of-next-function-in-express-js/

31-03-2025 40
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

31-03-2025 41
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

const express = require('express');

const app = express();

// Middleware 1: Log request method and URL

app.use((req, res, next) => {

console.log(`${req.method} request to ${req.url}`);

next();

});

// Middleware 2: Add a custom header

app.use((req, res, next) => {

res.setHeader('X-Custom-Header', 'Middleware Chaining Example');

next();

});

31-03-2025 42
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

// Route handler

app.get('/', (req, res) => {

res.send('Hello, World!');

});

app.listen(3000, () => {

console.log('Server is running on port 3000');

});

31-03-2025 43
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Middleware 1: Logs the HTTP method and URL of the incoming
request.

Middleware 2: Sets a custom header X-Custom-Header in the response.

Route Handler: Sends a “Hello, World!” message as the response.

31-03-2025 44
NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Output

When a client makes a GET request to http://localhost:3000/, the
server responds with:

Hello, World!

31-03-2025 NODEJS AND EXPRESS | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 45

