
Designing cloud applications

Designing applications for a cloud computing environment involves considering factors like

scalability, availability, security, and cost optimization, along with choosing the right cloud

platform and architecture.

Here's a more detailed breakdown of key aspects:

1. Cloud Platform Selection:

 IaaS (Infrastructure as a Service):

Provides virtualized computing resources (servers, storage, networks).

 PaaS (Platform as a Service):

Offers a platform for developing, running, and managing applications without the

complexity of managing infrastructure.

 SaaS (Software as a Service):

Delivers software applications over the internet, accessed by users through a web browser

or client application.

 Serverless Computing:

Allows developers to build and run applications without managing servers, focusing on

code execution and function execution.

 Considerations:

Choose the platform that best aligns with your application's requirements, budget, and

expertise.

2. Architectural Design:

 Microservices Architecture: Break down applications into smaller, independent services,

enabling scalability and flexibility.

 Monolithic Architecture: A single, large application that can be harder to scale and

maintain.

 Serverless Architecture: Deploy functions or microservices without managing

infrastructure.

 Cloud-Native Design: Design applications specifically for the cloud, leveraging cloud-native

technologies and services.

3. Key Design Principles:

 Scalability: Design applications to handle fluctuating workloads and user demands.

 Availability: Ensure high uptime and resilience through redundancy, fault tolerance, and

disaster recovery mechanisms

Here are the top 5 most popular real-world applications of cloud computing:

 Data Storage and Backup: ...

 Streaming Services: ...

 Email and Collaboration Tools: ...

 E-commerce and Online Businesses: ...

 Artificial Intelligence and Machine Learning:

 .

 Security: Implement robust security measures to protect data and applications from

unauthorized access and threats.

 Cost Optimization: Optimize resource utilization and implement cost-effective strategies.

 Performance: Design applications to deliver optimal performance and responsiveness.

 Modularity: Design applications with modular components to facilitate easier maintenance

and updates.

 Automation: Automate tasks like deployment, scaling, and monitoring to improve

efficiency.

 Design for Failure: Plan for potential failures and implement mechanisms to recover from

them.

4. Technical Considerations:

 Data Storage: Choose appropriate storage solutions (e.g., object storage, databases) based on

your application's data requirements.

 Networking: Design a robust and scalable network infrastructure.

 Monitoring and Logging: Implement comprehensive monitoring and logging to track

application performance and identify issues.

 Containerization: Use containers (e.g., Docker) to package and deploy applications,

promoting portability and consistency.

 Infrastructure as Code (IaC): Use code to define and manage infrastructure, enabling

automation and repeatability.

 Continuous Integration and Continuous Delivery (CI/CD): Automate the process of

building, testing, and deploying applications.

 Cloud Orchestration: Use tools to manage and orchestrate cloud resources across multiple

platforms.

 Cloud Computing Architecture: Designing the Optimal ...

15 Sept 2022 — Cloud computing architecture is split into two parts: front-end and back-end.

Although this is most relevant for desig...

Synopsys

 Cloud App Development: Uncovering Basics and Best Practices

The design and planning stage is critical for developing a cloud application that runs

seamlessly and meets user needs when launch...

Cloud design patterns help the design process

 The network is reliable

 Latency is zero

 Bandwidth is infinite

 The network is secure

 Topology doesn't change

 There's one administrator

 Component versioning is simple

 Observability implementation can be delayed

Design patterns don't eliminate notions such as these but can help bring awareness,

compensations, and mitigations of them. Each cloud pattern has its own trade-offs. You need

to pay attention more to why you're choosing a certain pattern than to how to implement it.

A well-architected workload considers how these industry-wide design patterns should be

used as the core building blocks for workload design. Every Azure Well-Architected pillar is

represented in these design patterns, often with the design pattern introducing tradeoffs with

the goals of other pillars.

	Cloud design patterns help the design process

