
Designing cloud applications

Designing applications for a cloud computing environment involves considering factors like

scalability, availability, security, and cost optimization, along with choosing the right cloud

platform and architecture.

Here's a more detailed breakdown of key aspects:

1. Cloud Platform Selection:

 IaaS (Infrastructure as a Service):

Provides virtualized computing resources (servers, storage, networks).

 PaaS (Platform as a Service):

Offers a platform for developing, running, and managing applications without the

complexity of managing infrastructure.

 SaaS (Software as a Service):

Delivers software applications over the internet, accessed by users through a web browser

or client application.

 Serverless Computing:

Allows developers to build and run applications without managing servers, focusing on

code execution and function execution.

 Considerations:

Choose the platform that best aligns with your application's requirements, budget, and

expertise.

2. Architectural Design:

 Microservices Architecture: Break down applications into smaller, independent services,

enabling scalability and flexibility.

 Monolithic Architecture: A single, large application that can be harder to scale and

maintain.

 Serverless Architecture: Deploy functions or microservices without managing

infrastructure.

 Cloud-Native Design: Design applications specifically for the cloud, leveraging cloud-native

technologies and services.

3. Key Design Principles:

 Scalability: Design applications to handle fluctuating workloads and user demands.

 Availability: Ensure high uptime and resilience through redundancy, fault tolerance, and

disaster recovery mechanisms



Here are the top 5 most popular real-world applications of cloud computing:

 Data Storage and Backup: ...

 Streaming Services: ...

 Email and Collaboration Tools: ...

 E-commerce and Online Businesses: ...

 Artificial Intelligence and Machine Learning:

 .

 Security: Implement robust security measures to protect data and applications from

unauthorized access and threats.

 Cost Optimization: Optimize resource utilization and implement cost-effective strategies.

 Performance: Design applications to deliver optimal performance and responsiveness.

 Modularity: Design applications with modular components to facilitate easier maintenance

and updates.

 Automation: Automate tasks like deployment, scaling, and monitoring to improve

efficiency.

 Design for Failure: Plan for potential failures and implement mechanisms to recover from

them.

4. Technical Considerations:

 Data Storage: Choose appropriate storage solutions (e.g., object storage, databases) based on

your application's data requirements.

 Networking: Design a robust and scalable network infrastructure.

 Monitoring and Logging: Implement comprehensive monitoring and logging to track

application performance and identify issues.

 Containerization: Use containers (e.g., Docker) to package and deploy applications,

promoting portability and consistency.

 Infrastructure as Code (IaC): Use code to define and manage infrastructure, enabling

automation and repeatability.

 Continuous Integration and Continuous Delivery (CI/CD): Automate the process of

building, testing, and deploying applications.

 Cloud Orchestration: Use tools to manage and orchestrate cloud resources across multiple

platforms.

 Cloud Computing Architecture: Designing the Optimal ...

15 Sept 2022 — Cloud computing architecture is split into two parts: front-end and back-end.

Although this is most relevant for desig...

Synopsys

 Cloud App Development: Uncovering Basics and Best Practices

The design and planning stage is critical for developing a cloud application that runs

seamlessly and meets user needs when launch...

Cloud design patterns help the design process

 The network is reliable

 Latency is zero

 Bandwidth is infinite

 The network is secure

 Topology doesn't change

 There's one administrator

 Component versioning is simple

 Observability implementation can be delayed

Design patterns don't eliminate notions such as these but can help bring awareness,

compensations, and mitigations of them. Each cloud pattern has its own trade-offs. You need

to pay attention more to why you're choosing a certain pattern than to how to implement it.

A well-architected workload considers how these industry-wide design patterns should be

used as the core building blocks for workload design. Every Azure Well-Architected pillar is

represented in these design patterns, often with the design pattern introducing tradeoffs with

the goals of other pillars.

	Cloud design patterns help the design process

