
 

 

 

 

 

 

UNIT III MEMORY MANAGEMENT 

Main Memory - Swapping - Contiguous Memory Allocation – Paging - Structure of the 

Page Table - Segmentation, Segmentation with paging; Virtual Memory - Demand Paging 

– Copy on Write - Page Replacement - Allocation of Frames –Thrashing. 

MAIN MEMORY: 

 

MEMORY HARDWARE: 

 Memory consists of a large array of bytes, each with its own address. The CPU 

fetches instructions from memory according to the value of the program counter. 

 Main memory and the registers built into the processor itself are the only general-

purpose storage that the CPU can access directly. 

 Registers that are built into the CPU are generally accessible within one cycle of the CPU 
clock. 

 A memory access may take many cycles of the CPU clock. In such cases, the processor 
normally needs to 

stall, since it does not have the data required to complete the instruction. 

 The remedy is to add fast memory between the CPU and main memory, typically on 

the CPU chip for fast access called as CACHE. 

 

 MEMORY PROTECTION: 

 For proper system operation we must protect the operating system from access by user 
processes. 

 Each process has a separate memory space. Separate per-process memory space 

protects the processes from each other. 

 The hardware protection of memory is provided by two registers 

o Base Register 

o Limit Register 

 The base register holds the smallest legal physical memory address, called the 

starting address of the process. 

 The Limit register specifies the size of range of the process. 

 

SNS College of Engineering 
Kurumbapalayam(Po), Coimbatore – 641 107 

Accredited by NAAC-UGC with ‘A’ Grade  

Approved by AICTE, Recognized by UGC  & Affiliated to Anna 

University, Chennai 



 

 

 If the base register holds300040 and the limit register is 120900, then the program 

can legally access all addresses from 300040 through 420939 

 

 Protection of memory space is accomplished by having the CPU hardware compare 

every address generated in user mode with the registers. 

 Any attempt by a program executing in user mode to access operating-system memory 

or other users’ memory results in a trap to the operating system, resulting in addressing 

error. 

  

 

 The base and limit registers can be loaded only by the operating system into the CPU 

hardware. 

 

 

 

 This scheme prevents a user program from modifying the code or data structures of 

either the operating system or other users. 

 The address generated by the CPU for a process should lie between the Base address of 
the process and base + Limit of the process, Else the hardware sends an interrupt to the 

OS. 



 

 

 

 

ADDRESS BINDING: 

 Address binding is the process of mapping the program's logical or virtual addresses to 

corresponding physical or main memory addresses. 

 Addresses in the source program are generally symbolic. 

 A compiler typically binds these symbolic addresses to relocatable addresses. 

 The linkage editor or loader in turn binds the relocatable addresses to absolute addresses 

 Each binding is a mapping from one address space to another . 

 

 

The binding of instructions and data to memory addresses can be done in three ways. 

1) Compile time. If you know at compile time where the process will reside in memory, 

then absolute code can be generated. 

2) Load time. If it is not known at compile time where the process will reside in memory, 

then the compiler must generate relocatable code. 

3) Execution time. If the process can be moved during its execution from one memory 

segment to another, then binding must be delayed until run time. 

LOGICAL VERSUS PHYSICAL ADDRESS SPACE: 

 An address generated by the CPU is commonly referred to as a logical address. which 

is also called as virtual address 

 The set of all logical addresses generated by a program is a logical address space. 



 

 

 An address seen by the memory unit—that is, the one loaded into the memory-

address register of the memory—is commonly referred to as a physical address. 

 The set of all physical addresses corresponding to these logical addresses is a physical 
address space. 

 The run-time mapping from virtual to physical addresses is done by a device called the 

memory-management unit (MMU). 

 

 The base register is also called as relocation register. 

 The value in the relocation register is added to every address generated by a user 

process at the time the address is sent to memory. 

 For example, if the base is at 14000, then an attempt by the user to address location 0 is 

dynamically relocated to location 14000; an access to location 346 is mapped to 

location 14346 

 

DYNAMIC LOADING: 

 Dynamic Loading is the process of loading a routine only when it is called or needed during 
runtime. 

 Initially all routines are kept on disk in a relocatable load format. 

 The main program is loaded into memory and is executed. When a routine needs to call 

another routine, the calling routine first checks to see whether the other routine has been 

loaded. If it has not, the relocatable linking loader is called to load the desired routine 

into memory. 

 The advantage of dynamic loading is that a routine is loaded only when it is needed. 

 This method is particularly useful when large amounts of code are needed to handle 

infrequently occurring cases, such as error routines. 

 

 

 



 

 

 

DYNAMIC LINKING AND SHARED LIBRARIES: 

 Dynamically linked libraries are system libraries that are linked to user programs 

when the programs are in execution. 

 In Dynamic linking the linking of system libraries are postponed until execution time. 

 Static Linking combines the system libraries to the user program at the time of compilation. 

 Dynamic linking saves both the disk space and the main memory space. 

 The libraries can be replaced by a new version and all the programs that reference the 

library will use the new version. This system is called as Shared libraries which can 

be done with dynamic linking. 

 

SWAPPING: 

 A process must be in memory to be executed. 

 A process can be swapped temporarily out of memory to a backing store and 

then brought back into memory for continued execution. This process is called as 

Swapping. 

 Swapping allows the total physical address space of all processes to exceed the real 

physical memory of the system, and increases the degree of multiprogramming in a 

system. 

 Swapping involves moving processes between main memory and a backing store. 
The backing store is commonly a fast disk. 

 

The system maintains a ready queue consisting of all processes whose memory images are on 
the backing store or in memory and are ready to run. 

Whenever the CPU scheduler decides to execute a process, it calls the dispatcher. The 

dispatcher checks to see whether the next process in the queue is in memory. 

If it is not, and if there is no free memory region, the dispatcher swaps out a process currently 

in memory and swaps in the desired process. 

EXAMPLE: Consider a multiprogramming environment with Round Robin Scheduling. When the quantum time of a 

process expires the memory manager will swap out the process just finished and swap another process into the memory 

space. 



 

 

 

 

 The context-switch time in such a swapping system is fairly high. 

 The major part of the swap time is transfer time. The total transfer time is directly 

proportional to the amount of memory swapped. 

 If we want to swap a process, we must be sure that it is completely idle. A process that 

is waiting for any event such as I/O Operation to occur should not be swapped. 

 

 

 A variant of swapping policy is used for priority based scheduling algorithms. If a higher 

priority process arrives and want service, the memory manager can then swap the lower 

priority process and then load and execute the higher priority process. 

 When the higher priority process finishes then the lower priority process can be swapped 
back in. This is also called as Roll in and Roll out. 

 

CONTIGUOUS MEMORY ALLOCATION: 

 The main memory must accommodate both the operating system and the various user 
processes 

 The memory is usually divided into two partitions: one for the resident operating 

system and one for the user processes. 

 In Multiprogramming several user processes to reside in memory at the same time. 

 The OS need to decide how to allocate available memory to the processes that are in 

the input queue waiting to be brought into memory. 

 In contiguous memory allocation, each process is contained in a single 

section of memory that is contiguous to the section containing the next 

process. 

 

MEMORY PROTECTION SCHEME: 

 We can prevent a process from accessing memory of other process. 



 

 

 If we have a system with a relocation register together with a limit register, we accomplish 
our goal. 

 The relocation register contains the value of the smallest physical address; the limit 

register contains the range of logical addresses 

 The MMU maps the logical address dynamically by adding the value in the relocation 
register. 

 This mapped address is sent to memory. 

 When the CPU scheduler selects a process for execution, the dispatcher loads the 

relocation and limit registers with the correct values as part of the context switch. 

 Every address generated by a CPU is checked against these registers, we can protect 

both the operating system and the other users’ programs 

MEMORY ALLOCATION: 

In Contiguous memory allocation the memory can be allocated in two ways 

1) Fixed partition scheme 

2) Variable partition scheme 

Fixed partition scheme: 

 One of the simplest methods for allocating memory is to divide memory into several fixed-
sized 

 Partitions. Each partition may contain exactly one process. 

 Thus, the degree of multiprogramming is bound by the number of partitions. 

 In this multiple partition method, when a partition is free, a process is selected from the 
input 

 queue and is loaded into the free partition. 

 When the process terminates, the partition becomes available for another process. 

 

INTERNAL FRAGMENTATION: 

In fixed size partitions, each process is allocated with a partition, irrespective of 

its size. The allocated memory for a process may be slightly larger than 

requested memory; this memory that is wasted internal to a partition, is 

called as internal fragmentation. 



 

 

Variable Partition scheme: 

 In the variable-partition scheme, the operating system keeps a table indicating which 

parts of memory are available and which are occupied. 

 Initially, all memory is available for user processes and is considered one large block of 
available memory, a 

hole. 

 When a process is allocated space, it is loaded into memory, and it can then compete for 

CPU time. When a process terminates, it releases its memory, which the operating 

system may then fill with another process from the input queue. 

 OS will have a list of available block sizes and an input queue. The operating 

system can order the input queueaccording to a scheduling algorithm. 

 Memory is allocated to processes until, finally, the memory requirements of the 

next process cannot be satisfied—that is, no available block of memory (or hole) is 

large enough to hold that process. 

 When a process arrives and needs memory, the system searches the set for a hole that 

is large enough for this process. 

 If the hole is too large, it is split into two parts. One part is allocated to the 

arriving process; the other is returned to the set of holes. 

 When a process terminates, it releases its block of memory, which is then placed back 

in the set of holes. If the new hole is adjacent to other holes, these adjacent holes are 

merged to form one larger hole. 

 The system may need to check whether there are processes waiting for memory and 

whether this newly freed and recombined memory could satisfy the demands of any of 
these waiting processes. 

 This procedure is a particular instance of the general dynamic storage allocation problem 

There are many solutions to this problem. 

 First fit: Allocate the first hole that is big enough. 

 Best fit: Allocate the smallest hole that is big enough. 

 Worst fit: Allocate the largest hole. 

Both the first-fit and best-fit strategies suffer from external fragmentation. 

EXTERNAL FRAGMENTATION: As processes are loaded and removed from memory, the 

free memory space is broken into little pieces. External fragmentation exists when there is 

enough total memory space to satisfy a request but the available spaces are not 

contiguous, so that the memory cannot be allocated to the process. 

 

COMPACTION: One solution to the problem of external fragmentation is compaction. The 

goal is to shuffle the memory contents so as to place all free memory together in one large 
block. 



 

 

50 PERCENT RULE: The analysis of first fit, reveals that given N allocated blocks, another 

0.5 N blocks will be lost to fragmentation. That is, one-third of memory may be unusable! 

This property is known as the 50-percent rule. 

 

NON CONTIGUOUS MEMORY ALLOCATION: 

The solution to the external-fragmentation problem is to permit the logical address space of 

the processes to be noncontiguous, thus allowing a process to be allocated physical memory 

wherever memory is available. 

Two complementary techniques achieve this solution: 

 segmentation 

 paging 

 

1. SEGMENTATION: 

 

Segmentation is a memory-management scheme that supports the 

programmer view of memory. A logical address space is a collection of 

segments. 

Each segment has a name and a length. 

The logical addresses specify both the segment name and the offset within the segment. Each 

address is specified by two quantities: a segment name and an offset 

Segment-number, offset>. 

A C compiler might create separate segments for the following: 

1. The code 

2. Global variables 

3. The heap, from which memory is allocated 

4. The stacks used by each thread 

5. The standard C library 



 

 

 

 

SEGMENTATION HARDWARE: 

 The programmer can refer to objects in the program by a two-dimensional address 

(segment number and offset); the actual physical memory a one dimensional sequence 

of bytes. 

 The two-dimensional user-defined addresses should be mapped into one-dimensional 

physical addresses. 

 The mapping of logical address to physical address is done by a table called segment table. 

 Each entry in the segment table has a segment base and a segment limit. 

 The segment base contains the starting physical address where the segment resides in 

memory 

 The segment limit specifies the length of the segment. 

 A logical address consists of two parts: a segment number, s, and an offset into that 
segment, d. 

 The segment number is used as an index to the segment table. The offset d of the 
logical address must be between 0 and the segment limit. 

 If it is not between 0 and limit then hardware trap to the operating system (logical 

addressing attempt beyond end of segment). 

 When an offset is legal, it is added to the segment base to produce the address in 
physical memory of the desired byte. 

 The segment table is an array of base–limit register pairs. 

 Segmentation can be combined with paging. 

 

 



 

 

 

 

 

 

 

 The Segment 2 is 400 bytes long and begins at location 4300. Thus, a reference to 

byte 53 of segment 2 is mapped onto location 4300 + 53 = 4353. 

 A reference to segment 3, byte 852, is mapped to 3200 (the base of segment 3) + 852 = 
4052. 

 A reference to byte 1222 of segment 0 would result in a trap to the operating system, 

Example: Consider five segments numbered from 0 through 4. The segment table has a separate entry for each segment, 

giving the beginning address of the segment in physical memory (or base) and the length of that segment (or limit). 



 

 

as this segment is only 1,000 bytes long. 

 

2. PAGING: 

 Paging involves breaking physical memory into fixed-sized blocks called frames and 
breaking logical memory 

 

into blocks of the same size called pages. 

 Paging avoids external fragmentation and the need for compaction, whereas segmentation 
does not. 

 When a process is to be executed, its pages are loaded into any available memory frames 

 

PAGING HARDWARE: 

 Every address generated by the CPU is divided into two parts: a page number (p) and a 
page offset (d). 

 The page number is used as an index into a page table. 

 The page table contains the base address of each page in physical memory. 

 This base address is combined with the page offset to define the physical memory 

address that is sent to the memory unit. 

 

 

The page size is defined by the hardware. The size of a page is a power of 2, varying between 

512 bytes and 1 GB per page. 

If the size of the logical address space is 2m, and a page size is 2n bytes, then the high-order 

m− n bits of a logical address designate the page number, and the n low-order bits designate the 
page offset. 

The logical address is given by 

 



 

 

Here p is an index into the page table and d is the displacement within the page. 

PAGING MODEL: 

 

 

 

PAGING EXAMPLE: 

 

 Consider the memory with the logical address, n= 2 and m = 4. Using a page size of 

4 bytes and a physical memory of 32 bytes 

 Logical address 0 is page 0, offset 0. Indexing into the page table, we find that page 

0 is in frame 5. Thus, logical address 0 maps to physical address 20 [= (5 × 4) + 0]. 

 Logical address 3 (page 0, offset 3) maps to physical address 23 [= (5 × 4) + 3]. 



 

 

 Logical address 4 is page 1, offset 0; according to the page table, page 1 is mapped to frame 

6. 

 Thus, logical address 4 maps to physical address 24 [= (6 × 4) + 0]. 

 

FREE FRAME LIST: 

 

 Each page of the process needs one frame. Thus, if the process requires n pages, at 

least n frames must be available in memory. 

 If n frames are available, they are allocated to this arriving process. 

 The operating system is managing physical memory and knows the allocation details 

of physical memory— which frames are allocated, which frames are available, how 

many total frames there are, and so on. 

 This information is generally kept in a data structure called a frame table. 

 

 

 

 

HARDWARE SUPPORT: 

 The hardware implementation of the page table can be done in several ways. The page 

table is implemented as a set of dedicated registers if the size of the page table is too 

small. 

 If the size of the page table is too large then the page table is kept in main memory 
and a page table base register is used to point to the page table. 

 When the page table is kept in main memory then two memory accesses are required to 

access a byte. 



 

 

 One for accessing the page table entry, another one for accessing the byte. 

 Thus the overhead of accessing the main memory increases. 

 The standard solution to this problem is to use a special, small, fast lookup hardware 

cache called a translation look-aside buffer (TLB). 

 

 

 Each entry in the TLB consists of two parts: a key (or tag) and a value. 

 The TLB contains only a few of the page-table entries. 

 When a logical address is generated by the CPU, its page number is presented to the 

TLB. If the page number is found (TLB HIT), its frame number is immediately 

available and is used to access memory. 

 If the page number is not in the TLB (TLB miss), a memory reference to the page table 

must be made. When the frame number is obtained, we can use it to access memory. 

 The percentage of times that the page number of interest is found in the TLB is called the 

hit ratio. 

 The access time of a byte is said to be effective when the TLB hit ratio is high. 

 Thus the effective access time is given by 

Effective access time = TLB hit ratio* Memory access time +TLB miss ratio* (2*memory 

access time) PROTECTION: 

 Memory protection in a paged environment is accomplished by protection bits associated 

with each frame. 

 One bit can define a page to be read–write or read-only. When the physical address 

is being computed, the protection bits can be checked to verify that no writes are being 

made to a read-only page 

 One additional bit is generally attached to each entry in the page table: a valid–invalid 

bit. When this bit is set to valid, the associated page is in the process’s logical address 

space and is thus a legal. 



 

 

 When the bit is set to invalid, the page is not in the process’s logical address space. 

 Page-table length register (PTLR),is used to indicate the size of the page table. This 

value is checked against every logical address to verify that the address is in the valid 

range for the process 

 

SHARED PAGES: 

 

 An advantage of paging is the possibility of sharing common code. 

 If the code is reentrant code (or pure code), however, it can be shared. 

 Reentrant code is non-self-modifying code: it never changes during execution. Thus, 
two or more processes can execute the same code at the same time 

 

 

Only one copy of the editor need be kept in physical memory. Each user’s page table maps 
onto the same physical copy of the editor, but data pages are mapped onto different frames. 

EXAMPLE: Consider three processes that share a page editor which is of three pages. Each process has its own data 

page. 



 

 

 

 

 

 

STRUCTURE OF PAGE TABLE: 

The structure of page table includes 

 Hierarchical paging 

 Hashed page table 

 Inverted page table. 

 

HIERARCHIAL PAGING: 

 

 In Computer a system that has a 32 bit logical address space the page table becomes 

too large. Each process may need upto 4MB of Physical address space for the page 

table alone. 

 One simple solution to this problem is to divide the page table into smaller pieces. 

One way is to use a two- level paging algorithm, in which the page table itself is also 

paged. 

 Consider the system with a 32-bit logical address space and a page size of (2 12)4 KB. 

 A logical address is divided into a page number consisting of 20 bits and a page offset 
consisting of 12 bits. 

 The page number is further divided into a 10-bit page number and a 10-bit page offset. 



 

 

 

 

 Here p1 is an index into the outer page table and p2 is the displacement within the page of 

the inner page table. 

 

 

 

 

 

 Address translation works from the outer page table inward; this scheme is also known 

as a forward mapped page table. 

 

 

HASHED PAGE TABLES: 

 A common approach for handling address spaces larger than 32 bits is to use a 

hashed page table, with the hash value being the virtual page number. 

 Each entry in the hash table contains a linked list of elements that hash to the same location 



 

 

 Each element consists of three fields: 

 virtual page number, 

 value of the mapped page frame 

 pointer to the next element in the linked list 

 The virtual page number in the virtual address is hashed into the hash table. The 

virtual page number is compared with field 1 in the first element in the linked 
list. 

 If there is a match, the corresponding page frame (field 2) is used to form the desired 

physical address. 

 If there is no match, subsequent entries in the linked list are searched for a matching virtual 

page number. 

 

 

 

 A variation to hashed page table is clustered page tables, which are similar to hashed 

page tables except that each entry in the hash table refers to several pages (such as 16) 
rather than a single page. 

 

INVERTED PAGE TABLES: 

 Each process has an associated page table. The page table has one entry for each page that 
the process is using. 

 The table is sorted by virtual address, the operating system calculate where in the table 

the associated physical address entry is located and to use that value directly. 

 One of the drawbacks of this method is that each page table may consist of millions of 

entries. 

 To solve this problem, we can use an inverted page table. 

 An inverted page table has one entry for each frame of memory. Each entry consists of 

the virtual address of the page stored in that real memory location; with information 



 

 

about the process that owns the page. 

 Thus, only one page table is in the system, and it has only one entry for each page of 

physical memory. 

 Each Logical address in the system consists of a triple :< process-id, page-number, 
offset>. 

 Each inverted page-table entry is a pair <process-id, page-number> 

 When a memory reference occurs, part of the virtual address, consisting of <process-
id,page number>, 

 is presented to the memory subsystem. The inverted page table is then searched for 

a match. If a match is found—say, at entry i—then the physical address <i, offset> is 

generated.. 

 

 

INTEL 32 AND 64-BIT ARCHITECTURES [SEGMENTATION WITH PAGING] 

 Memory management in IA-32 systems is divided into two components segmentation and 
paging. 

 The CPU generates logical addresses, which are given to the segmentation unit. 

 The segmentation unit produces a linear address for each logical address. 

 The linear address is then given to the paging unit, which in turn generates the 

physical address in main memory. 

 Thus, the segmentation and paging units form the equivalent of the memory-management 
unit 

 

IA-32 Segmentation: 

 The IA-32 architecture allows a segment to be as large as 4 GB, and the maximum 
number of segments per process is 16 K. 

 The logical address space of a process is divided into two partitions. Information 

about the process that are private to the process is kept in the local descriptor table 

(LDT); 



 

 

 The information that is shared among other processes is kept in the global descriptor table 
(GDT). 

 Each entry in the LDT and GDT consists of an 8-byte segment descriptor with 

detailed information about a particular segment, including the base location and limit 

of that segment. 

 The logical address is a pair (selector, offset), where the selector is a 16-bit number: 

 

 

 s designates the segment number, g indicates whether the segment is in the GDT or LDT, 

and p deals 

 with protection. 

 The offset is a 32-bit number specifying the location of the byte. 

 The segment registers points to the appropriate entry in the LDT or GDT. 

 The base and limit information about the segment is used to generate a linear address. 

 

 

 

IA -32 PAGING: 

 The IA-32 architecture allows a page size of either 4 KB or 4 MB. 

 For 4-KB pages, IA-32 uses a two-level paging scheme in which the division of the 

32-bit linear address is as follows. 

 

 

 The 10 high-order bits reference an entry in the outermost page table, which IA-32 terms 

the page directory. 



 

 

 The page directory entry points to an inner page table that is indexed by the contents of 

the innermost 10 bits in the linear address. 

 Finally, the low-order 12 bits refer to the offset in the 4-KB page pointed to in the page 

table. 

 Intel adopted a page address extension (PAE), which allows 32-bit processors 

to access a physical address space larger than 4 GB 

 PAE also increased the page-directory and page-table entries from 32 to 64 bits in size, 

which allowed the base address of page tables and page frames to extend from 20 to 24 

bits 

 The 10 high-order bits reference an entry in the outermost page table, which IA-32 terms 
the page directory. 

 The page directory entry points to an inner page table that is indexed by the contents of 

the innermost 10 bits in the linear address. 

 Finally, the low-order 12 bits refer to the offset in the 4-KB page pointed to in the page 

table. 

 Intel adopted a page address extension (PAE), which allows 32-bit processors 

to access a physical address space larger than 4 GB 

 PAE also increased the page-directory and page-table entries from 32 to 64 bits in size, 

which allowed the base address of page tables and page frames to extend from 20 to 24 

bits 

VIRTUAL MEMORY: 

 Virtual memory is a memory management technique that allows the execution of 

processes that are not completely in memory. 

 In some cases during the execution of the program the entire program may not be 

needed, such as error conditions, menu selection options etc. 

 The virtual address space of a process refers to the logical view of how a process is stored 

in memory. 



 

 

 

 

 

 The heap will grow upward in memory as it is used for dynamic memory allocation. 

 The stack will grow downward in memory through successive function calls . 

 The large blank space (or hole) between the heap and the stack is part of the virtual 
address space but will require actual physical pages only if the heap or stack grows. 

 Virtual address spaces that include holes are known as sparse address spaces. 

 Sparse address space can be filled as the stack or heap segments grow or if we 

wish to dynamically link libraries 

 Virtual memory allows files and memory to be shared by two or more processes through 

page sharing 

 



 

 

 

ADVANTAGES: 

 One major advantage of this scheme is that programs can be larger than physical memory 

 Virtual memory also allows processes to share files easily and to implement shared 

memory. 

 Increase in CPU utilization and throughput. 

 Less I/O would be needed to load or swap user programs into memory 

 

DEMAND PAGING: 

 Demand paging is the process of loading the pages only when they are demanded 

by the process during execution. Pages that are never accessed are thus never 

loaded into physical memory. 

 A demand-paging system is similar to a paging system with swapping where 

processes reside in secondary memory 

 

 When we want to execute a process, we swap it into memory. Rather than swapping 

the entire process into memory we use a lazy swapper that never swaps a page into 

memory unless that page will be needed. 



 

 

 

 Lazy swapper is termed to as pager in demand paging. 

 When a process is to be swapped in, the pager guesses which pages will be used before 

the process is swapped out again. Instead of swapping in a whole process, the pager 

brings only those pages into memory. 

 Os need the hardware support to distinguish between the pages that are in memory and 

the pages that are on the disk. The valid–invalid bit scheme can be used for this 

purpose. 

 If the bit is set to ―valid, the associated page is both legal and in memory. 

 If the bit is set to ―invalid, the page either is not valid or is valid but is currently on the 
disk. 

 

 

PAGE FAULT: If the process tries to access a page that was not brought into memory, then it is 

called as a page fault. Access to a page marked invalid causes a page fault. 

The paging hardware, will notice that the invalid bit is set, causing a trap to the operating system. 

 

PROCEDURE FOR HANDLING THE PAGE FAULT: 

1. Check an internal table (usually kept with the process control block) for this process to 

determine whether the reference was a valid or an invalid memory access. 

2. If the reference was invalid, we terminate the process. If it was valid but we have not yet 

brought in that page, we now page it in. 

3. Find a free frame 

4. Schedule a disk operation to read the desired page into the newly allocated frame. 

5. When the disk read is complete, we modify the internal table kept with the process and the 

page table to indicate that the page is now in memory. 

6. Restart the instruction that was interrupt. Though it had always been in memory. 



 

 

 

 

 

PURE DEMAND PAGING: The process of executing a program with no pages in main 

memory is called as pure demand paging. This never brings a page into memory until it is 
required. 

The hardware to support demand paging is the same as the hardware for paging and swapping: 

 Page table. This table has the ability to mark an entry invalid through a valid–invalid bit 

or a special value of protection bits. 

 Secondary memory. This memory holds those pages that are not present in main 

memory. The secondary memory is usually a high-speed disk. It is known as the swap 

device, and the section of disk used for this purpose is known as swap space. 

 

PERFORMANCE OF DEMAND PAGING: 

Demand paging can affect the performance of a computer system. 

 The effective access time for a demand-paged memory is given by 

 effective access time = (1 − p) × ma + p × page fault time. 

 The memory-access time, denoted ma, ranges from 10 to 200 nanoseconds. 

 If there is no page fault then the effective access time is equal to the memory access time. 

 If a page fault occurs, we must first read the relevant page from disk and then access the 

desired word. 

 There are three major components of the page-fault service time: 

1. Service the page-fault interrupt. 

2. Read in the page. 

3. Restart the process 

 With an average page-fault service time of 8 milliseconds and a memory access time 



 

 

of 200 nanoseconds, the effective access time in nanoseconds is 

Effective access time = (1 − p) × (200) + p (8 milliseconds) 

= (1 − p) × 200 + p × 8,000,000 

= 200 + 7,999,800 × p. 

 Effective access time is directly proportional to the page-fault rate. 

 

PAGE REPLACEMENT: 

NEED FOR PAGE REPLACEMENT: 

 Page replacement is basic to demand paging 

 If a page requested by a process is in memory, then the process can access it. If the 
requested page is not in main memory, then it is page fault. 

 When there is a page fault the OS decides to load the pages from the secondary memory 

to the main memory. It looks for the free frame. If there is no free frame then the pages 

that are not currently in use will be swapped out of the main memory, and the desired 

page will be swapped into the main memory. 

 The process of swapping a page out of main memory to the swap space and 

swapping in the desired page into the main memory for execution is called as Page 

Replacement. 

 

 

STEPS IN PAGE REPLACEMENT: 

1. Find the location of the desired page on the disk. 

2. Find a free frame: 

a. If there is a free frame, use it. 

b. If there is no free frame, use a page-replacement algorithm to select a victim frame. 

c. Write the victim frame to the disk; change the page and frame tables accordingly. 

3. Read the desired page into the newly freed frame; change the page and frame tables. 



 

 

4. Continue the user process from where the page fault occurred. 

 If no frames are free, two page transfers (one out and one in) are required. This 

situation effectively doubles the page-fault service time and increases the effective 

access time accordingly. 

 This overhead can be reduced by using a modify bit (or dirty bit). 

 When this scheme is used, each page or frame has a modify bit associated with it in the 
hardware. 

 MODIFY BIT: The modify bit for a page is set by the hardware whenever any byte in 

the page is written into, indicating that the page has been modified. 

 When we select a page for replacement, we examine its modify bit. If the bit is set, we 
know that the page has been modified since it was read in from the disk. In this case, 

we must write the page to the disk. 

 If the modify bit is not set, however, the page has not been modified since it was 

read into memory. In this case, we need not write the memory page to the disk: it is 

already there. 

 

PAGE REPLACEMENT ALGORITHMS: 

 If we have multiple processes in memory, we must decide how many frames to 

allocate to each process; and when page replacement is required, we must select the 

frames that are to be replaced. 

 

 The string of memory references made by a process is called a 

reference string. There are many different page-replacement 

algorithms that includes 

 FIFO page Replacement 

 Optimal Page Replacement 

 LRU Page Replacement 

 LRU Approximation page Replacement algorithm 

 Counting Based Page Replacement Algorithm 

 Page Buffering Algorithm 

 

FIFO PAGE REPLACEMENT: 

 The simplest page-replacement algorithm is a first-in, first-out (FIFO) algorithm. 

 A FIFO replacement algorithm replaces the oldest page that was brought into main 

memory. 

 
 The three frames are empty initially. 

 The first three references (7, 0, 1) cause page faults and are brought into these empty 
frames. 

EXAMPLE: Consider the Reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 for a memory with three 

frames. 



 

 

 The algorithm has 15 faults. 

 

 

 Page 0 is the next reference and 0 is already in memory, we have no fault for this reference. 

 The first reference to 3 results in replacement of page 0, since it is now first in line. 

 Because of this replacement, the next reference, to 0, will fault. Page 1 is then replaced 

by page 0. The process continues until all the pages are referenced. 

Advantages: 

 The FIFO page-replacement algorithm is easy to understand and program 

Disadvantages: 

 The Performance is not always good. 

 It Suffers from Belady’s Anomaly. 

BELADY’S ANOMALY: The page fault increases as the number of allocated memory 

frame increases. This unexpected result is called as Belady’s Anomaly. 

 

 

 



 

 

 

 When the reference to page 4 occurs, however, LRU replacement sees that, of the 

three frames in memory, page 2 was used least recently. 

 Thus, the LRU algorithm replaces page 2, not knowing that page 2 is about to be used. 

 When it then faults for page 2, the LRU algorithm replaces page 3, since it is now the 

least recently used of the three pages in memory. 

 

Advantages: 

 The LRU policy is often used as a page-replacement algorithm and is considered to be 
good. 

 LRU replacement does not suffer from Belady’s anomaly. 

 

Disadvantage: 

 The problem is to determine an order for the frames defined by the time of last use. 

 Two implementations are feasible: 

• Counters. We associate with each page-table a time-of-use field and add to the CPU a logical 

clock or counter. The clock is incremented for every memory reference. Whenever a reference 

to a page is made, the contents of the clock register are copied to the time-of-use field in the 

page-table entry for that page. So we can find the ―time‖ of the last reference to each page. 

• Stack. Another approach to implementing LRU replacement is to keep a stack of page 

numbers. Whenever a page is referenced, it is removed from the stack and put on the top. In 

this way, the most recently used page is always at the top of the stack and the least recently 

used page is always at the bottom 

STACK ALGORITHM: 

A stack algorithm is an algorithm for which it can be shown that the set of pages in 

memory for n frames is always a subset of the set of pages that would be in memory with n + 1 

frames. 



 

 

 

 

LRU APPROXIMATION PAGE REPLACEMENT ALGORITHM: 

 The system provides support to the LRU algorithm in the form of a bit called Reference bit. 

REFERENCE BIT: 

The reference bit for a page is set by the hardware whenever that page is referenced (either a 

read or a write to any byte in the page). 

 Reference bits are associated with each entry in the page table. 

 Initially, all bits are cleared (to 0) by the operating system. As a user process executes, 

the bit associated with each page referenced is set (to 1) by the hardware. 

 

 After some time, we can determine which pages have been used and which have not 

been used by examining the reference bits. 

 This information is the basis for many page-replacement algorithms that approximate LRU 

replacement. 

 

a) Additional-reference-bits algorithm 

 The additional ordering information can be gained by recording the reference bits at 

regular intervals. We can keep an 8-bit byte for each page in a table in memory. 

 At regular intervals (say, every 100 milliseconds), a timer interrupt transfers control to the 

operating system. 

 These 8-bit shift registers contain the history of page use for the last eight time periods. 

 If the shift register contains 00000000, for example, then the page has not been used for 

eight time periods. 



 

 

 A page that is used at least once in each period has a shift register value of 11111111. 

 A page with a history register value of 11000100 has been used more recently 

than one with a value of 01110111. 

 Thus the page with the lowest number is the LRU page, and it can be replaced. 

b) Second-Chance Algorithm: 

 The basic algorithm of second-chance replacement is a FIFO replacement algorithm. 

 When a page has been selected, however, we inspect its reference bit. 

 If the value is 0, we proceed to replace this page; but if the reference bit is set to 1, we 

give the page a second chance and move on to select the next FIFO page. 

 When a page gets a second chance, its reference bit is cleared, and its arrival time is 

reset to the current time. Thus, a page that is given a second chance will not be 

replaced until all other pages have been replaced 

 One way to implement the second-chance algorithm is as a circular queue. 

 A pointer indicates which page is to be replaced next. When a frame is needed, the 

pointer advances until it finds a page with a 0 reference bit. 

 Once a victim page is found, the page is replaced, and the new page is inserted in the 

circular queue in that position 

 

 

 

 

 

 

c. Enhanced Second-Chance Algorithm 



 

 

 We can enhance the second-chance algorithm by considering the reference bit and the 

modify as an ordered pair 

 The order is {Reference bit, Modify bit} 

 we have the following four possible classes: 

 0, 0) neither recently used nor modified—best page to replace 

 0, 1) not recently used but modified—not quite as good 

 1, 0) recently used but clean—probably will be used again soon 

 1, 1) recently used and modified—probably will be used again soon, and the page will 

be need to be written out to disk before it can be replaced 

 Here we give preference to those pages that have been modified in order to reduce the 

number of I/Os required. Thus the modified pages will not be replaced before writing it 

to the disk. 

 

COUNTING-BASED PAGE REPLACEMENT 

 We can keep a counter of the number of references that have been made to each page. 

This method includes two schemes 

 Least frequently used (LFU) page-replacement: The least frequently used 

(LFU) page- replacement algorithm requires that the page with the smallest count 

be replaced. The reason for this selection is that an actively used page should have 

a large reference count. 

 Most frequently used (MFU) page-replacement algorithm: The most frequently 

used (MFU) page- replacement algorithm is based on the argument that the page 

with the smallest count was probably just brought in and has yet to be used. 

 

PAGE BUFFERING ALGORITHM: 

 systems commonly keep a pool of free frames 

 When a page fault occurs, a victim frame is chosen as and the desired page is read into 

a free frame from the pool before the victim is written out. 

 This procedure allows the process to restart as soon as possible, without waiting for 

the victim page to be written out. When the victim is later written out, its frame is 

added to the free-frame pool. 

 Whenever the paging device is idle, a modified page is selected and is written to the 

disk. Its modify bit is then reset. 

 This scheme increases the probability that a page will be clean when it is selected for 

replacement 

 

ALLOCATION OF FRAMES: 

 Allocation of frames deals with how the operating system allocates the fixed amount 



 

 

of free memory among the various processes. 

 Consider a single-user system with 128 KB of memory composed of pages 1 KB in size. 

 This system has 128 frames. The operating system may take 35 KB, leaving 93 frames for 
the user process. 

 Under pure demand paging, all 93 frames would initially be put on the free-frame list. 

When a user process started execution, it would generate a sequence of page faults. 

 The first 93 page faults would all get free frames from the free-frame list. When the free-

frame list was exhausted, a page-replacement algorithm would be used to select one of 

the 93 in-memory pages to be replaced with the 94th, and so on. 

 When the process terminated, the 93 frames would once again be placed on the free-frame 

list. 

 Operating system allocates all its buffer and table space from the free-frame list. 

 When this space is not in use by the operating system, it can be used to support user paging. 

a) Minimum Number of Frames 

OS cannot allocate more than the total number of available frames (unless there is page 

sharing). It must also allocate at least a minimum number of frames as required by the process. 

 The reason for allocating at least a minimum number of frames involves performance. 
As the number of 

 

frames allocated to each process decreases, the page-fault rate increases, slowing process 

execution. 

 Consider a machine in which all memory-reference instructions may reference only 

one memory address. We need at least one frame for the instruction and one frame for 

the memory reference. 

 If one-level indirect addressing is allowed (for example, a load instruction on page 16 

can refer to an address on page 0, which is an indirect reference to page 23), then 
paging requires at least three frames per process. 

 The worst-case scenario occurs in computer architectures that allow multiple levels of 

indirection. 

 To overcome this difficulty, we must place a limit on the levels of indirection. 

 When the first indirection occurs, a counter is set to the maximum number of indirections 

allowed; the counter is then decremented for each successive indirection for this 

instruction. If the counter is decremented to 0, a trap occurs. 

 The minimum number of frames is defined by the computer architecture and the 

maximum number is defined by the amount of available physical memory. 

b) Allocation Algorithms 

The Operating system makes use of various allocation algorithms to allocate the frames to the user 
process. 

 Equal Allocation 



 

 

 Proportional Allocation 

EQUAL ALLOCATION: 

 The easiest way to split m frames among n processes is to give everyone an equal share, 
m/n frames. 

 If there are 93 frames and five processes, each process will get 18 frames. The three 

leftover frames can be used as a free-frame buffer pool. This scheme is called equal 

allocation. 

DISADVANTAGE: 

 Consider a system with a 1-KB frame size. If a small student process of 10 KB and an 

interactive database of 127 KB are the only two processes running in a system with 62 

free frames, each process will be allocated with 31 frames. 

 The student process does not need more than 10 frames, so the other 21 are wasted. 

PROPORTIONAL ALGORITHM: 

 The Os allocates the available memory to each process according to its size. 

 Let the size of the virtual memory for process pi be si , given by 

 If the total number of available frames is m, we allocate ai frames to process pi, where ai is 
approximately ai = 

si/S × m. 

 Consider a system with a 1-KB frame size. If a small student process of 10 KB and an 

interactive database of 127 KB are the only two processes running in a system with 62 

free frames. 

 we would split 62 frames between two processes, one of 10 pages and one of 127 

pages, by allocating 4 frames and 57 frames, respectively, since 10/137 × 62 ≈ 4, and 
127/137 × 62 ≈ 57. 

 Thus both processes share the available frames according to their ―needs,‖ rather than 
equally. 

 A high-priority process is treated the same as a low-priority process. 

 we may want to give the high-priority process more memory to speed its execution, to 

the detriment of low- priority processes. 

 One solution is to use a proportional allocation scheme wherein the ratio of frames 

depends not on the relative sizes of processes but rather on the priorities of processes 

or on a combination of size and priority. 

 

c) Global versus Local Allocation 

 Another important factor in the way frames are allocated to the various processes is page 

replacement. 

Page-replacement algorithms are divided into two broad categories: 

o global replacement 

o local replacement. 



 

 

 Global replacement allows a process to select a replacement frame from the set of all 

frames, even if that frame is currently allocated to some other process; 

 Local replacement requires that each process select from only its own set of allocated 
frames. 

 

 

 A process can select a replacement from among its own frames or the frames of any 
lower-priority process. This approach allows a high-priority process to increase its frame 
allocation 

 One problem with a global replacement algorithm is that a process cannot control its own 

page-fault rate. The set of pages in memory for a process depends not only on the paging 

behavior of that process but also on the paging behavior of other processes. 

 In local replacement, the set of pages in memory for a process is affected by the paging 

behavior of only that process. 

 

d) Non-Uniform Memory Access 

 In some systems, a given CPU can access some sections of main memory faster than it 

can access others. These performance differences are caused by how CPUs and memory 

are interconnected in the system. 

 A system is made up of several system boards, each containing multiple CPUs and some 
memory. 

 The CPUs on a particular board can access the memory on that board with less delay 

than they can access memory on other boards in the system. 

 The systems in which the memory access time are uniform is called as Uniform memory 
access. 

 Systems in which memory access times vary significantly are known collectively as non-

uniform memory access (NUMA) systems, and they are slower than systems in which 

memory and CPUs are located on the same motherboard. 

 Managing which page frames are stored at which locations can significantly affect 

performance in NUMA systems. 

 If we treat memory as uniform in such a system, CPUs may wait significantly longer for 
memory access. 

EXAMPLE: consider an allocation scheme where in we allow high-priority processes to select frames from low- 

priority processes for replacement. 



 

 

 

 

 The goal is to have memory frames allocated ―as close as possible‖ to the CPU on 
which the process is 

running so that the memory access can be faster. 

 In NUMA systems the scheduler tracks the last CPU on which each process ran. If 

the scheduler tries to schedule each process onto its previous CPU, and the memory-

management system tries to allocate frames for 

the process close to the CPU on which it is being scheduled, then improved cache hits and 

decreased memory access times will result. 

 

THRASHING: 

 If the process does not have the number of frames it needs to support pages in active 

use, it will quickly page-fault. At this point, it must replace some page. If all its 

pages are in active use, it must replace a page that will be needed again right away. 

So it quickly faults again, and again, and again, replacing pages that it must bring 

back in immediately. This high paging activity is called thrashing. 

 

 A process is thrashing if it is spending more time paging than executing. 

Causes of Thrashing: 

 The operating system monitors CPU utilization If CPU utilization is too low; we increase 

the degree of multiprogramming by introducing a new Process to the system. 

 Now suppose that a process enters a new phase in its execution and needs more frames. 
It starts faulting and taking frames away from other processes. 

 A global page-replacement algorithm is used; it replaces pages without regard to the 

process to which they belong. 

 These processes need those pages, however, and so they also fault, taking frames from 

other processes. These faulting processes must use the paging device to swap pages in 

and out. As processes wait for the paging device, CPU utilization decreases. 



 

 

 The CPU scheduler sees the decreasing CPU utilization and increases the degree of 

multiprogramming as a result. The new process tries to get started by taking frames from 

running processes, causing more page faults and a longer queue for the paging device. 

 As a result, CPU utilization drops even further, and the CPU scheduler tries to increase 

the degree of multiprogramming even more. Thrashing has occurred, and system 
throughput plunges. 

 

 

 At this point, to increase CPU utilization and stop thrashing, we must decrease the degree 

of Multi programming. 

 We can limit the effects of thrashing by using a local replacement algorithm. With 

local replacement, if one process starts thrashing, it cannot steal frames from another 

process, so the page fault of one process does not affect the other process. 

 To prevent thrashing, we must provide a process with as many frames as it needs. The 

Os need to know how many frames are required by the process. 

 The working-set strategy starts by looking at how many frames a process is actually 

using. This approach defines the locality model of process execution. 

 A locality is a set of pages that are actively used together. A program is generally 

composed of several different localities, which may overlap. 

 Suppose we allocate enough frames to a process to accommodate its current locality. It 

will fault for the pages in its locality until all these pages are in memory; then, it will not 

fault again until it changes localities. 

 If we do not allocate enough frames to accommodate the size of the current locality, the 

process will thrash, since it cannot keep in memory all the pages that it is actively using. 

Working-Set Model 

 The working-set model is based on the assumption of locality. 

 This model uses a parameter Δ to define the working-set window. 

 The idea is to examine the most recent Δ page references. 

 The set of pages in the most recent Δ page references is the working set. 



 

 

 

 

 If a page is in active use, it will be in the working set. 

 If it is no longer being used, it will drop from the working set Δ time units after its last 

reference. 

 

 If Δ is too small, it will not encompass the entire locality; 

 If Δ is too large, it may overlap several localities. 

 If Δ is infinite, the working set is the set of pages touched during the process execution. 

 The most important property of the working set, then, is its size. If we compute the 

working-set size, WSSi , for each process in the system, we can then consider that 

 Here D is the total demand for frames. 

 Thus, process i needs WSSi frames. If the total demand is greater than the total number 

of available frames (D> m), thrashing will occur, because some processes will not have 
enough frames. 

 If there are enough extra frames, another process can be initiated. 

 If the sum of the working-set sizes increases, exceeding the total number of available 
frames, the operating system selects a process to suspend. 

 This working-set strategy prevents thrashing while keeping the degree of 

multiprogramming as high as possible. 

Page-Fault Frequency 

 The page fault frequency is calculated by the total number of faults to the total number of 
references. 

Page fault frequency = No. of page Faults / No. of References 

 Thrashing has a high page-fault rate. Thus, we want to control the page-fault rate. 

 When it is too high, we know that the process needs more frames. 

 Conversely, if the page-fault rate is too low, then the process may have too many frames. 

 Establish an upper and lower bounds on the desired page-fault rate. 

EXAMPLE: Consider the sequence of memory references shown. If Δ = 10 memory references, then the working set 

at time t1 is {1, 2, 5, 6, 7}. By time t2, the working set has changed to {3, 4}. 



 

 

 If the actual page-fault rate exceeds the upper limit, we allocate the process another frame. 

 

If the page-fault rate falls below the lower limit, we remove a frame from the process. 

 Thus, we can directly measure and control the page-fault rate to prevent thrashing. 

 If the page-fault rate increases and no free frames are available, we must select some 

process and swap it out to backing store. 

 The freed frames are then distributed to processes with high page-fault rates. 
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