

Exception Handling in Java

The Exception Handling in Java is one of the powerful mechanism to handle the runtime

errors so that the normal flow of the application can be maintained.

In Java, an exception is an event that disrupts the normal flow of the program. It is an object

which is thrown at runtime.

Exception Handling is a mechanism to handle runtime errors such as ClassNotFoundException,

IOException, SQLException, RemoteException, etc.

Advantage of Exception Handling

The core advantage of exception handling is to maintain the normal flow of the

application. An exception normally disrupts the normal flow of the application; that is

why we need to handle exceptions.

1. statement 1;

2. statement 2;

3. statement 3;

4. statement 4;

5. statement 5;//exception occurs

6. statement 6;

7. statement 7;

8. statement 8;

9. statement 9;

10. statement 10;

Suppose there are 10 statements in a Java program and an exception occurs at statement

5; the rest of the code will not be executed, i.e., statements 6 to 10 will not be executed.

However, when we perform exception handling, the rest of the statements will be

executed. That is why we use exception handling in Java.

Major reasons why an exception Occurs

• Invalid user input
• Device failure
• Loss of network connection
• Physical limitations (out-of-disk memory)
• Code errors
• Opening an unavailable file

https://www.javatpoint.com/java-tutorial

Types of Exceptions

Java defines several types of exceptions that relate to its various class
libraries. Java also allows users to define their own exceptions.

1. Built-in Exceptions

Built-in exceptions are the exceptions that are available in Java libraries.
These exceptions are suitable to explain certain error situations.
• Checked Exceptions: Checked exceptions are called compile-time

exceptions because these exceptions are checked at compile-time by the
compiler.

• Unchecked Exceptions: The unchecked exceptions are just opposite to
the checked exceptions. The compiler will not check these exceptions at
compile time. In simple words, if a program throws an unchecked
exception, and even if we didn’t handle or declare it, the program would
not give a compilation error.

1. Built-in Exceptions

Built-in exceptions are the exceptions that are available in Java libraries.
These exceptions are suitable to explain certain error situations.
• Checked Exceptions: Checked exceptions are called compile-time

exceptions because these exceptions are checked at compile-time by the

compiler.

• Unchecked Exceptions: The unchecked exceptions are just opposite to
the checked exceptions. The compiler will not check these exceptions at
compile time. In simple words, if a program throws an unchecked
exception, and even if we didn’t handle or declare it, the program would
not give a compilation error.

Java try...catch

The try...catch block in Java is used to handle exceptions and prevents the

abnormal termination of the program.

Here's the syntax of a try...catch block in Java.

try{

 // code

}

catch(exception) {

 // code

}

The try block includes the code that might generate an exception.

The catch block includes the code that is executed when there occurs an

exception inside the try block.

Example: Java try...catch block

class Main {

 public static void main(String[] args) {

 try {

 int divideByZero = 5 / 0;

 System.out.println("Rest of code in try block");

 }

https://www.programiz.com/java-programming/exceptions

 catch (ArithmeticException e) {

 System.out.println("ArithmeticException => " + e.getMessage());

 }

 }

}

Output

ArithmeticException => / by zero

In the above example, notice the line,

int divideByZero = 5 / 0;

Here, we are trying to divide a number by zero. In this case, an exception

occurs. Hence, we have enclosed this code inside the try block.

When the program encounters this code, ArithmeticException occurs. And, the

exception is caught by the catch block and executes the code inside

the catch block.

The catch block is only executed if there exists an exception inside

the try block.

Note: In Java, we can use a try block without a catch block. However, we

cannot use a catch block without a try block.

Java try...finally block

We can also use the try block along with a finally block.

In this case, the finally block is always executed whether there is an exception

inside the try block or not.

Example: Java try...finally block

class Main {

 public static void main(String[] args) {

 try {

 int divideByZero = 5 / 0;

 }

 finally {

 System.out.println("Finally block is always executed");

 }

 }

}

Output

Finally block is always executed

Exception in thread "main" java.lang.ArithmeticException: / by zero

 at Main.main(Main.java:4)

In the above example, we have used the try block along with

the finally block. We can see that the code inside the try block is causing an

exception.

However, the code inside the finally block is executed irrespective of the

exception.

Java throws keyword

Syntax of Java throws

return_type method_name() throws exception_class_name{

//method code

}

1. try: The try block is used to enclose a segment of code that might throw an

exception, ensuring that any exception arising from the enclosed code can be gracefully

managed.

2. catch: The catch block follows the try block and defines how to handle specific types

of exceptions. Multiple catch blocks can be used after a single try to handle different

exception types individually.

3. throw: The throw keyword is employed to manually trigger or throw an exception

from the code. It's often used in conjunction with user-defined or system exceptions to

indicate when something abnormal occurs.

4. throws: Used in method signatures, the throws keyword indicates that the method

might throw specified exceptions.

t's a way of notifying callers that they should be prepared to handle (or further propagate) these

exceptions.

5. finally: The finally block, used after the try-catch structure, ensures that a particular

segment of code runs regardless of whether an exception was thrown in the try block. This is

typically used for cleanup operations, like closing resources.

Let's discuss each of the above 5 exception-handling keywords with syntax and examples.

1. try Block
Enclose the code that might throw an exception within a try block. If an exception occurs within

the try block, that exception is handled by an exception handler associated with it. The try block

contains at least one catch block or finally block.

The syntax of the try-catch block:

try{
//code that may throw exception
}catch(Exception_class_Name ref){}

The syntax of a try-finally block:

try{
//code that may throw exception
}finally{}

Example:

try {
 int result = 10 / 0;
} catch (ArithmeticException e) {
 System.out.println(e.getMessage());
}

In the above code, dividing by zero will cause an ArithmeticException. The statements inside

the try block are where we anticipate this error might occur.

Nested try block

The try block within a try block is known as a nested try block in java.

public class NestedTryBlock {

 public static void main(String args[]) {
 try {
 try {
 System.out.println(" This gives divide by zero
error");
 int b = 39 / 0;
 } catch (ArithmeticException e) {
 System.out.println(e);
 }

 try {
 System.out.println(" This gives Array index out of
bound exception");
 int a[] = new int[5];
 a[5] = 4;
 } catch (ArrayIndexOutOfBoundsException e) {
 System.out.println(e);
 }

 System.out.println("other statement");
 } catch (Exception e) {
 System.out.println("handeled");

 }

 System.out.println("normal flow..");
 }
}

2. catch Block
Java catch block is used to handle the Exception. It must be used after the try block only. You

can use multiple catch blocks with a single try.

Syntax:

try
{
 //code that cause exception;
}
catch(Exception_type e)
{
 //exception handling code
}

Examples:

Example 1: catch ArithmeticException exception:

public class Arithmetic {

 public static void main(String[] args) {

 try {
 int result = 30 / 0; // Trying to divide by zero
 } catch (ArithmeticException e) {
 System.out.println("ArithmeticException caught!");
 }
 System.out.println("rest of the code executes");
 }
}

Output:

ArithmeticException caught!
rest of the code executes

Example 2: catch ArrayIndexOutOfBoundsException exception:

try {
 int[] arr = {1, 2, 3};

 System.out.println(arr[5]);
} catch (ArrayIndexOutOfBoundsException e) {
 System.out.println("Array index is out of bounds!");
}

In this code, we're trying to access an index that doesn't exist in the array. The corresponding

catch block catches this exception and handles it by printing a custom error message.

Multi-catch Block

In some cases, more than one exception could be raised by a single piece of code. To handle

this type of situation, you can specify two or more catch clauses, each catching a different type

of exception.

When an exception is thrown, each catch statement is inspected in order, and the first one

whose type matches that of the exception is executed. After one catch statement executes, the

others are bypassed, and execution continues after the try/catch block.

Example: Consider a scenario where we want to parse an integer from a string and then use

that integer as an array index. Both of these operations can throw exceptions

- NumberFormatException and ArrayIndexOutOfBoundsException.

public class MultiCatchExample {

 public static void main(String[] args) {
 String numStr = "10a"; // This will cause NumberFormatException
 int[] numbers = {1, 2, 3, 4, 5};

 try {
 int num = Integer.parseInt(numStr); // Parsing integer from string
 System.out.println(numbers[num]); // Accessing array element
 } catch (NumberFormatException | ArrayIndexOutOfBoundsException e) {
 System.out.println("An error occurred: " + e.getMessage());
 }
 }
}

Output:

An error occurred: For input string: "10a"

In the example above, the try block contains two statements, each of which can throw an

exception. The catch block can handle both exceptions because of the multi-catch feature.

https://www.javaguides.net/2019/07/numberformatexception-in-java-example.html
https://www.javaguides.net/2019/07/java-arrayindexoutofboundsexception-example.html

3. throw Keyword
The throw keyword is used to explicitly throw an exception from a method or any block of code.

We can throw either checked or unchecked exceptions using the throw keyword. The throw

keyword is followed by an instance of the exception.

Syntax:

throw exception_instance;

Example:

Let's consider a simple example where we have a method setAge() that sets the age of a

person. If someone tries to set a negative age, it's clearly an incorrect value. In such a case, we

can throw an IllegalArgumentException.

public class ThrowExample {

 private int age;

 public void setAge(int age) {
 if (age < 0) {
 throw new IllegalArgumentException("Age cannot be negative!");
 }
 this.age = age;
 }

 public static void main(String[] args) {
 ThrowExample person = new ThrowExample();

 try {
 person.setAge(-5); // This will cause an exception
 } catch (IllegalArgumentException e) {
 System.out.println("Error: " + e.getMessage());
 }
 }
}

Output:

Error: Age cannot be negative!

In the setAge method, if the age provided is negative, we throw

an IllegalArgumentException with a relevant message.

4. throws Keyword

https://www.javaguides.net/2023/08/illegalargumentexception-in-java.html
https://www.javaguides.net/2023/08/illegalargumentexception-in-java.html

The throws keyword is used to declare exceptions. It doesn’t throw an exception but specifies

that a method might throw exceptions. It's typically used to inform callers of the exceptions they

might encounter.

Syntax:

return_type method_name() throws exception_class_name{
//method code
}

Example:

public class ExceptionHandlingWorks {

 public static void main(String[] args) {
 exceptionHandler();
 }

 private static void exceptionWithoutHandler() throws IOException {
 try (BufferedReader reader = new BufferedReader(new FileReader(new
File("/invalid/file/location")))) {
 int c;
 // Read and display the file.
 while ((c = reader.read()) != -1) {
 System.out.println((char) c);
 }
 }
 }

 private static void exceptionWithoutHandler1() throws IOException {
 exceptionWithoutHandler();
 }

 private static void exceptionWithoutHandler2() throws IOException {
 exceptionWithoutHandler1();
 }

 private static void exceptionHandler() {
 try {
 exceptionWithoutHandler2();
 } catch (IOException e) {
 System.out.println("IOException caught!");
 }
 }
}

5. finally Block

• Java finally block is a block that is used to execute important code such as closing

connection, stream, etc.

• Java finally block is always executed whether an exception is handled or not.

• Java finally block follows try or catch block.

• For each try block, there can be zero or more catch blocks, but only one finally block.

• The finally block will not be executed if the program exits(either by

calling System.exit() or by causing a fatal error that causes the process to abort).

Syntax:

try {
 // Code that might throw an exception
} catch (ExceptionType1 e1) {
 // Code to handle ExceptionType1
} catch (ExceptionType2 e2) {
 // Code to handle ExceptionType2
}
// ... more catch blocks if necessary ...
finally {
 // Code to be executed always, whether an exception occurred or not
}

Example 1:

In this example, we have used FileInputStream to read the simple.txt file. After reading a file

the resource FileInputStream should be closed by using finally block.

public class FileInputStreamExample {
 public static void main(String[] args) {

 FileInputStream fis = null;
 try {
 File file = new File("sample.txt");
 fis = new FileInputStream(file);
 int content;
 while ((content = fis.read()) != -1) {
 // convert to char and display it
 System.out.print((char) content);
 }
 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 if (fis != null) {
 try {
 fis.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

https://www.javaguides.net/2018/08/fileinputstream-class-in-java.html
https://www.javaguides.net/2018/08/fileinputstream-class-in-java.html

 }
 }
}

This diagram summarizes the usage of try, catch, throw, throws, and finally keywords:

Sr.

no.

Basis of Differences throw throws

1. Definition Java throw keyword is used

throw an exception explicitly in

the code, inside the function or

the block of code.

Java throws keyword is used in

the method signature to declare

an exception which might be

thrown by the function while the

execution of the code.

2. Type of exception Using throw

keyword, we can only propagate

unchecked exception i.e., the

checked exception cannot be

propagated using throw only.

Using throws keyword, we can

declare both checked and

unchecked exceptions.

However, the throws keyword

can be used to propagate

checked exceptions only.

3. Syntax The throw keyword is followed

by an instance of Exception to

be thrown.

The throws keyword is followed

by class names of Exceptions to

be thrown.

4. Declaration throw is used within the

method.

throws is used with the method

signature.

5. Internal implementation We are allowed to throw only

one exception at a time i.e. we

cannot throw multiple

exceptions.

We can declare multiple

exceptions using throws

keyword that can be thrown by

the method. For example, main()

throws IOException,

SQLException.

Java throw Example

TestThrow.java

public class TestThrow {

 //defining a method

 public static void checkNum(int num) {

 if (num < 1) {

 throw new ArithmeticException("\nNumber is negative, cannot calculate squ

are");

 }

 else {

 System.out.println("Square of " + num + " is " + (num*num));

 }

 }

 //main method

 public static void main(String[] args) {

 TestThrow obj = new TestThrow();

 obj.checkNum(-3);

 System.out.println("Rest of the code..");

 }

}

Java throws Example

TestThrows.java

1. public class TestThrows {

2. //defining a method

3. public static int divideNum(int m, int n) throws ArithmeticException {

4. int div = m / n;

5. return div;

6. }

7. //main method

8. public static void main(String[] args) {

9. TestThrows obj = new TestThrows();

10. try {

11. System.out.println(obj.divideNum(45, 0));

12. }

13. catch (ArithmeticException e){

14. System.out.println("\nNumber cannot be divided by 0");

15. }

16.

17. System.out.println("Rest of the code..");

18. }

19. }

Output:

Java throw and throws Example

TestThrowAndThrows.java

public class TestThrowAndThrows

{

 // defining a user-defined method

 // which throws ArithmeticException

 static void method() throws ArithmeticException

 {

 System.out.println("Inside the method()");

 throw new ArithmeticException("throwing ArithmeticException");

 }

 //main method

 public static void main(String args[])

 {

 try

 {

 method();

 }

 catch(ArithmeticException e)

 {

 System.out.println("caught in main() method");

 }

 }

}

Output:

 you can use the Throw keyword to throw an exception explicitly in the code. In contrast, you
can use the Throws keyword to declare that a method might throw an exception in the code.

S.
No.

Key
Difference throw throws

1.
Point of
Usage

The throw keyword is
used inside a function. It is
used when it is required to

throw an Exception
logically.

The throws keyword is used
in the method signature. It is
used when the method has
some statements that can

lead to exceptions.

2.
Exceptions

Thrown

The throw keyword is
used to throw an exception
explicitly. It can throw only
one exception at a time.

The throws keyword can be
used to declare multiple

exceptions, separated by a
comma. Whichever exception

occurs, if matched with the
declared ones, is thrown

automatically then.

3. Syntax

Syntax of throw keyword
includes the instance of

the Exception to be
thrown. Syntax wise throw
keyword is followed by the

instance variable.

Syntax of throws keyword
includes the class names of
the Exceptions to be thrown.
Syntax wise throws keyword

is followed by exception
class names.

S.
No.

Key
Difference throw throws

4.
Propagation

of
Exceptions

throw keyword cannot
propagate checked

exceptions. It is only used
to propagate the

unchecked Exceptions that
are not checked using the

throws keyword.

throws keyword is used to
propagate the checked

Exceptions only.

Java Thread Model

The java programming language allows us to create a program
that contains one or more parts that can run simultaneously at
the same time. This type of program is known as a
multithreading program. Each part of this program is called a
thread. Every thread defines a separate path of execution in
java. A thread is a light wieght process. A thread is a subpart of
a process that can run individually.

In java, a thread goes through different states throughout its
execution. These stages are called thread life cycle states or
phases. A thread may in any of the states like new, ready or
runnable, running, blocked or wait, and dead or terminated
state. The life cycle of a thread in java is shown in the following
figure.

New

When a thread object is created using new, then the thread is said to be in the New
state. This state is also known as Born state.

Example

Thread t1 = new Thread();

Runnable / Ready

When a thread calls start() method, then the thread is said to be in the Runnable state.
This state is also known as a Ready state.

Example

t1.start();

Running

When a thread calls run() method, then the thread is said to be Running. The run()
method of a thread called automatically by the start() method.

Blocked / Waiting

A thread in the Running state may move into the blocked state due to various reasons
like sleep() method called, wait() method called, suspend() method called, and join(
) method called, etc.

When a thread is in the blocked or waiting state, it may move to Runnable state due
to reasons like sleep time completed, waiting time completed, notify() or notifyAll()
method called, resume() method called, etc.

Example

Thread.sleep(1000);

wait(1000);

wait();

suspened();

notify();

notifyAll();

resume();

Dead / Terminated

A thread in the Running state may move into the dead state due to either its execution
completed or the stop() method called. The dead state is also known as the
terminated state.

The java programming language provides two methods to create threads, and they
are listed below.

• Using Thread class (by extending Thread class)
• Uisng Runnable interface (by implementing Runnable interface)

Extending Thread class

The java contains a built-in class Thread inside the java.lang package. The Thread
class contains all the methods that are related to the threads.

To create a thread using Thread class, follow the step given below.

• Step-1: Create a class as a child of Thread class. That means, create a class that
extends Thread class.

• Step-2: Override the run() method with the code that is to be executed by the thread.
The run() method must be public while overriding.

• Step-3: Create the object of the newly created class in the main() method.
• Step-4: Call the start() method on the object created in the above step.

Implementng Runnable interface

The java contains a built-in interface Runnable inside the java.lang package. The
Runnable interface implemented by the Thread class that contains all the methods
that are related to the threads.

To create a thread using Runnable interface, follow the step given below.

• Step-1: Create a class that implements Runnable interface.

• Step-2: Override the run() method with the code that is to be executed by the thread.
The run() method must be public while overriding.

• Step-3: Create the object of the newly created class in the main() method.
• Step-4: Create the Thread class object by passing above created object as parameter

to the Thread class constructor.
• Step-5: Call the start() method on the Thread class object created in the above step.

Look at the following example program.

The Thread classs contains the following methods.

Method Description

run() Defines actual task of the thread.

start() It moves the thread from Ready state to Running state by calling run() method.

setName(String) Assigns a name to the thread.

Method Description

getName() Returns the name of the thread.

setPriority(int) Assigns priority to the thread.

getPriority() Returns the priority of the thread.

getId() Returns the ID of the thread.

activeCount() Returns total number of thread under active.

currentThread() Returns the reference of the thread that currently in running state.

sleep(long) moves the thread to blocked state till the specified number of milliseconds.

isAlive() Tests if the thread is alive.

yield() Tells to the scheduler that the current thread is willing to yield its current use of a
processor.

join() Waits for the thread to end.

Java Thread Priority
In a java programming language, every thread has a property called priority. Most of
the scheduling algorithms use the thread priority to schedule the execution
sequence. In java, the thread priority range from 1 to 10. Priority 1 is considered as the
lowest priority, and priority 10 is considered as the highest priority. The thread with
more priority allocates the processor first.

The java programming language Thread class provides two methods setPriority(int),
and getPriority() to handle thread priorities.

The Thread class also contains three constants that are used to set the thread priority,
and they are listed below.

• MAX_PRIORITY - It has the value 10 and indicates highest priority.
• NORM_PRIORITY - It has the value 5 and indicates normal priority.
• MIN_PRIORITY - It has the value 1 and indicates lowest priority.

🔔 The default priority of any thread is 5 (i.e. NORM_PRIORITY).

setPriority() method

The setPriority() method of Thread class used to set the priority of a thread. It takes
an integer range from 1 to 10 as an argument and returns nothing (void).

The regular use of the setPriority() method is as follows.

Example

threadObject.setPriority(4);

or

threadObject.setPriority(MAX_PRIORITY);

getPriority() method

The getPriority() method of Thread class used to access the priority of a thread. It
does not takes anyargument and returns name of the thread as String.

The regular use of the getPriority() method is as follows.

Example

String threadName = threadObject.getPriority();

Java Thread Synchronisation
The java programming language supports multithreading. The problem of shared resources
occurs when two or more threads get execute at the same time. In such a situation, we
need some way to ensure that the shared resource will be accessed by only one thread at a
time, and this is performed by using the concept called synchronization.

The synchronization is the process of allowing only one thread to access a shared resource
at a time.

In java, the synchronization is achieved using the following concepts.

• Mutual Exclusion
• Inter thread communication

Mutual Exclusion

Using the mutual exclusion process, we keep threads from interfering with one
another while they accessing the shared resource. In java, mutual exclusion is
achieved using the following concepts.

• Synchronized method
• Synchronized block

Synchronized method

When a method created using a synchronized keyword, it allows only one object to
access it at a time. When an object calls a synchronized method, it put a lock on that
method so that other objects or thread that are trying to call the same method must
wait, until the lock is released. Once the lock is released on the shared resource, one
of the threads among the waiting threads will be allocated to the shared resource.

In the above image, initially the thread-1 is accessing the synchronized method and other
threads (thread-2, thread-3, and thread-4) are waiting for the resource (synchronized
method). When thread-1 completes it task, then one of the threads that are waiting is
allocated with the synchronized method, in the above it is thread-3.

Example

class Table{

 synchronized void printTable(int n) {

 for(int i = 1; i <= 10; i++)

 System.out.println(n + " * " + i + " = " + i*n);

 }

}

class MyThread_1 extends Thread{

 Table table = new Table();

 int number;

 MyThread_1(Table table, int number){

 this.table = table;

 this.number = number;

 }

 public void run() {

 table.printTable(number);

 }

}

class MyThread_2 extends Thread{

 Table table = new Table();

 int number;

 MyThread_2(Table table, int number){

 this.table = table;

 this.number = number;

 }

 public void run() {

 table.printTable(number);

 }

}

public class ThreadSynchronizationExample {

 public static void main(String[] args) {

 Table table = new Table();

 MyThread_1 thread_1 = new MyThread_1(table, 5);

 MyThread_2 thread_2 = new MyThread_2(table, 10);

 thread_1.start();

 thread_2.start();

 }

}

Java Inter Thread Communication
Inter thread communication is the concept where two or more threads communicate
to solve the problem of polling. In java, polling is the situation to check some
condition repeatedly, to take appropriate action, once the condition is true. That
means, in inter-thread communication, a thread waits until a condition becomes true
such that other threads can execute its task. The inter-thread communication allows
the synchronized threads to communicate with each other.

Java provides the following methods to achieve inter thread communication.

• wait()
• notify()
• notifyAll()

The following table gives detailed description about the above methods.

Method Description

void wait() It makes the current thread to pause its execution until other thread in the same monitor calls
notify()

void notify() It wakes up the thread that called wait() on the same object.

void
notifyAll()

It wakes up all the threads that called wait() on the same object.

🔔 Calling notify() or notifyAll() does not actually give up a lock on a resource.

Let's look at an example problem of producer and consumer. The producer produces
the item and the consumer consumes the same. But here, the consumer can not
consume until the producer produces the item, and producer can not produce until
the consumer consumes the item that already been produced. So here, the consumer
has to wait until the producer produces the item, and the producer also needs to wait
until the consumer consumes the same. Here we use the inter-thread communication
to implement the producer and consumer problem.

class ItemQueue {

 int item;

 boolean valueSet = false;

 synchronized int getItem()

 {

 while (!valueSet)

 try {

 wait();

 } catch (InterruptedException e) {

 System.out.println("InterruptedException caught");

 }

 System.out.println("Consummed:" + item);

 valueSet = false;

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 System.out.println("InterruptedException caught");

 }

 notify();

 return item;

 }

 synchronized void putItem(int item) {

 while (valueSet)

 try {

 wait();

 } catch (InterruptedException e) {

 System.out.println("InterruptedException caught");

 }

 this.item = item;

 valueSet = true;

 System.out.println("Produced: " + item);

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 System.out.println("InterruptedException caught");

 }

 notify();

 }

}

class Producer implements Runnable{

 ItemQueue itemQueue;

 Producer(ItemQueue itemQueue){

 this.itemQueue = itemQueue;

 new Thread(this, "Producer").start();

 }

 public void run() {

 int i = 0;

 while(true) {

 itemQueue.putItem(i++);

 }

 }

}

class Consumer implements Runnable{

 ItemQueue itemQueue;

 Consumer(ItemQueue itemQueue){

 this.itemQueue = itemQueue;

 new Thread(this, "Consumer").start();

 }

 public void run() {

 while(true) {

 itemQueue.getItem();

 }

 }

}

class ProducerConsumer{

 public static void main(String args[]) {

 ItemQueue itemQueue = new ItemQueue();

 new Producer(itemQueue);

 new Consumer(itemQueue);

 }

}

Multithreading in java
The java programming language allows us to create a program that contains one or
more parts that can run simultaneously at the same time. This type of program is
known as a multithreading program. Each part of this program is called a thread. Every
thread defines a separate path of execution in java. A thread is explained in different
ways, and a few of them are as specified below.

A thread is a light wieght process.

A thread may also be defined as follows.

A thread is a subpart of a process that can run individually.

In java, multiple threads can run at a time, which enables the java to write multitasking
programs. The multithreading is a specialized form of multitasking. All modern
operating systems support multitasking. There are two types of multitasking, and they
are as follows.

• Process-based multitasking
• Thread-based multitasking

It is important to know the difference between process-based and thread-based
multitasking. Let's distinguish both.

Process-based multitasking Thread-based multitasking

It allows the computer to run two or more programs
concurrently

It allows the computer to run two or more threads
concurrently

In this process is the smallest unit. In this thread is the smallest unit.

Process is a larger unit. Thread is a part of process.

Process is heavy weight. Thread is light weight.

Process requires separate address space for each. Threads share same address space.

Process never gain access over idle time of CPU. Thread gain access over idle time of CPU.

Inter process communication is expensive. Inter thread communication is not expensive.

Java Wrapper Classes

A Wrapper class in Java is a class that wraps around a primitive data

type and converts it into an object

Primitive Data Type Wrapper Class

byte Byte

short Short

int Integer

long Long

float Float

double Double

boolean Boolean

char Character

Sometimes you must use wrapper classes, for example when working with

Collection objects, such as ArrayList, where primitive types cannot be used (the

list can only store objects):

Example

ArrayList<int> myNumbers = new ArrayList<int>(); // Invalid

ArrayList<Integer> myNumbers = new ArrayList<Integer>(); // Valid

Autoboxing

Autoboxing is the automatic conversion that the Java compiler makes

between the primitive types and their corresponding object wrapper

classes. For example, converting an int to an Integer, a double to a

Double, and so on.

	Exception Handling in Java
	Advantage of Exception Handling
	Major reasons why an exception Occurs
	Types of Exceptions
	1. Built-in Exceptions
	1. Built-in Exceptions

	Java try...catch
	Example: Java try...catch block
	Java try...finally block
	Example: Java try...finally block

	Java throws keyword
	Syntax of Java throws

	1. try Block
	The syntax of the try-catch block:
	The syntax of a try-finally block:
	Example:
	Nested try block

	2. catch Block
	Syntax:
	Examples:
	Multi-catch Block

	3. throw Keyword
	Syntax:
	Example:

	4. throws Keyword
	Syntax:
	Example:

	5. finally Block
	Syntax:
	Example 1:
	Java throw Example
	Java throws Example
	Java throw and throws Example

	you can use the Throw keyword to throw an exception explicitly in the code. In contrast, you can use the Throws keyword to declare that a method might throw an exception in the code.
	Java Thread Model
	New
	Runnable / Ready
	Running
	Blocked / Waiting
	Dead / Terminated
	Extending Thread class
	Implementng Runnable interface
	setPriority() method
	getPriority() method

	Java Thread Synchronisation
	Mutual Exclusion
	Synchronized method

	Java Inter Thread Communication
	Multithreading in java
	Java Wrapper Classes
	Example

	Autoboxing

