

TOPIC: 2.5.NEWTON'S DIVIDED DIFFERENCE INTERPOLATION

DIVIDED DIFFERENCES:
Divided digreence routhood avoids all in comparision and arithematic operation are used in Lagrangian polynomial.
and authematic operation are used in Laglangian polynomial.
method.
Nauton's divided digrama formula is $(x-x_0)(x-x_1)f(x_0,x_1,x_2)+$
(4cx)= 40 + (x-20) f(20,2,1)+ (x-20) (2-21) f
Nexton's at the to the second of the second

Agurents	Entry y=k(x)	Afa)	2nd D.D.	33/(x) A3/(x)	41/2 D.D.	
Xo	40		1			D 76
α_1	41	1571 = kg	kzk1 = K11	K1=K11 = K14	Kue - Kui Dc4 - Xo) 41 =
χ_2	42	43-42 = 15 2-23 = 15	1 2 2 2 2 1 2 K	K13 K12 K112	Kue-kui Jey-xo	
x_3	43	94-43 = Ky	1 24 - 3 = K13	4-4-	114 344	
24	4	24-3			And States	

1. Fin		bic fund	ica from the	pollowing	tables	codes.
fix)	:1 4	to ten's a	Divided 2	jywence to 43/(x)	atle is	
0 1 . 3	1 4	4-1-0=3	19-7	9-5 = 1	21	

	WEATONE.			www.snsgro	ups.com			
	Newton's de	ivided digge	rence primula	às,	IMSV.			
	11-1-4+12-X	0) 1(20, 2)	1) + (2-20)0	$x-x_1)$ $f(x_0, x_1,$	72)			
		1- 7) (Z.	- ag) f(ho, 2)	1~21~37.				
		(x) (x-	1) (5) + (2)					
	. 3 . Г	~ 2(5)	1+ L					
	= 1+ 3x + 5	122 - 5x+	2 - 32					
	- (x) - 2 4 2	adurania	I from the	Aldoing battle	and			
2.	Find the certic phynomial from the following battle and							
	here find yu	1 2	5					
	9=f(a): 2	3 12	147					
	Solution:	's divided	diguesa f	ormula is				
		1		1	7			
	α $y=\xi(a)$	A\$(2)	Afon)	4 3 fcz)	100			
	0 2	3-2	C h hims	Woodson and				
		3-2=1	$\frac{9-1}{2-0} = 4$	9-4	30			
	1 3	12-3 = 9		5-0 = 1				
	2 12	2-1	45-9 = 9	1 1-31				
		5-2 = 45		2-28				
	5 147			98	4			
SNSCE/ S	S&H/UNITZ/NM/2.5 - NEWTO	N'S DIVIDED DIFFERI	ENCE FORMULA		Page 5/4			

The Newton's divided Digjetence formula is

$$y(x) = \frac{y}{0} + (2 - 20) \int (20, x_1) + (2 - 20) (2x - 21) \int (2x_0, 2x_1, 20) + (2x - 20) \int (2x_0, 2x_1, 20) + (2x - 20) \int (2x_0, 2x_1, 20) + (2x_0, 2x_1, 20) \int (2x_0, 2x_1, 20) + (2x_0, 2x_1, 20) \int (2x_0, 2x_1, 20) \int (2x_0, 2x_1, 20) + (2x_0, 2x_1, 20) \int (2x_0, 2x_1, 2x_1, 20) \int (2x_0, 2x_1, 2x$$