

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Sub: Microcontroller Programming And Interfacing Subcode:23ECB202 Unit-IV

PIC PROGRAMMING IN C: TIMER, SERIAL PORT AND INTERRUPT/

Programming Timers 0,1, 2 and 3 in C

Programming Timers 0,1, 2 and 3 in C

- Measure the time or generate an accurate time delay. The microcontroller can also generate and measure the required time delays by running loops. Still, the timer relieves the CPU from that redundant and repetitive task, allowing it to allocate maximum processing time for other tasks.
- The timer is nothing but a simple binary counter that can be configured to count clock pulses (Internal/External). Once it reaches the max value, it will roll back to zero, setting up an **OverFlow** flag and generating the interrupt if enabled.

PIC16F877A Timers

- PIC16F877A has three timers.
 - Timer0 (8-bit timer)
 - Timer1 (16-bit timer)
 - Timer2 (8-bit timer)

All Timers can act as a timer or counter or PWM Generation.

- To start using a timer, we should understand 8-bit/16-bit timers, prescalers, Timer interrupts, and Focs.
 - As said earlier, there are both the 8-bit and 16-bit Timers in our PIC16F877A. The main difference between them is that the 16-bit Timer has a much better Resolution than the 8-bit Timer.
- **Prescalers** is a name for the part of a microcontroller that divides the oscillator clock before it reaches logic that increases the timer status.
- The range of the Prescalers ID is from 1 to 256, and the value of the Prescalers can be set using the OPTION Register

- To start using a timer we should understand some of the fancy terms like **8-bit/16-bit timer, Prescaler, Timer interrupts, and Focs.** Now, let us see what each one really means.
- As said earlier, there are both the 8-bit and 16-bit Timers in our PIC16F877A. The main difference between them is that the 16-bit Timer has a much better Resolution than the 8-bit Timer.
- **Prescaler** is a name for the part of a microcontroller that divides the oscillator clock before it reaches logic that increases timer status.
- The range of the Prescaler ID is from 1 to 256 and the value of the Prescaler can be set using the OPTION Register

- The Timer0 module timer/counter has the following features:
- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable Prescaler
- Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

1. OPTION_REG

We perform all the necessary settings with OPTION_REG Register. The size of the register is 8 bits.

OPTION_REG REGISTER

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
1	bit 7							bit 0

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

RBPU: PORTB Pull-up Enable bit (This bit is not used for timers)

- 1= PORTB pulls-ups are disabled
- 0= PORTB pulls-ups are enabled by individual port latch values
- **INTEDG** (This bit is not used for timers)
- TOCS: TMR0 Clock Source Select bit
- 1= Transition on T0CK1 pin
- 0= Internal instruction cycle clock (CLKO)

T0SE: TMR0 Source Edge Select bit

- 1 = Increment on high-to-low transition on T0CKI pin
- 0 = Increment on low-to-high transition on T0CKI pin
- **PSA**: Prescaler Assignment bit
- 1 = Prescaler is assigned to the WDT
- 0 = Prescaler is assigned to the Timer0 module

PS2:PS0: Prescal	er Rate Select bits
------------------	---------------------

i mere module	Bit Value	TMR0 Rate	WDT Rate		
	000	1:2	1:1		
1 •	001	1:4	1:2		
t bits	010	1:8	1:4		
	011	1:16	1:8		
	100	1:32	1:16		
	101	1:64	1:32		
	110	1:128	1:64		
PIC Programming in C/ TImer 0,	1,2 <u>1an</u> d 3	1:256	1:128		

07-04-2025

2. INTCON Register

INTCON REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF
•	bit 7							bit 0
	R = Readable b	it W = Wri '0' = Bit	table bit is cleared	U = Unimple x = Bit is un	mented bit, rea	nd as '0' - n =	Value at POR	
	- Dit is set	0 - 01	13 oreared	A - Dit is un	Allowin .			

GIE: Global Interrupt Enable bit

- 1-Enables all unmasked interrupts 0-Disables all interrupts
- PIE: Peripheral Interrupt Enable bit

1-Enables all unmasked peripheral interrupts 0-Disables all peripheral interrupts

TMR0IE: TMR0 Overflow Interrupt Enable bit

1-Enables the TMR0 interrupt 0-Disables the TMR0 interrupt 07-04-2025 **INTE:** Not for Timers

RBIE: Not for Timers

TMR0IF: TMR0 Overflow Interrupt Flag bit

1-TMR0 register has overflowed (must be cleared in software)0-TMR0 register did not overflow

INTF: Not for Timers

RBIF: Not for Timers

PIC Programming in C/ TImer 0,1,2 and 3

This is the 8-bit register that holds the timer values. For example, initially, it will be 0. It will increment by one per one clock cycle. When it reaches 255, it will trigger the TMR0IF bit in INTCON Register. Then again starts from 0.

Delay Calculation for 1 second

$$fout = \frac{fclk}{4*\operatorname{Prescaler}^*(256 - \operatorname{TMR0})*\operatorname{Count}} \quad where \quad Tout = \frac{1}{fout}$$

Here, My fclk = 11.0592MHz (You can put your board's fclk) Prescaler = 256 (It is based on PS0 – PS2 bits in OPTION_REG) TMR0 = 0. (My TMR0's value will be 0)

Delay Calculation for 1 second

Desire Delay (Tout = 1 second) So Fout = 1 (Tout = 1/Fout)

Apply these values to the above formula.

Count = 11059200 / (4*256*256*1)

• Count = 42.1875 (approximately 42).

Timer 0 - Example Code

```
#include<pic.h>
       void t0delay();
       void main()
       {
         TRISB=0;
                             //Prescale is assigned to Timer 0, Prescaler value = 256, Fclk = 11.0592MHz
         OPTION REG=0x07;
         while(1) {
           PORTB=0xff;
           t0delay();
           PORTB=0x00;
           t0delay();
          }
       }
       void t0delay()
                                 // 1 second
       {
         int i;
         for(i=0;i<42;i++) {</pre>
           while(!T0IF);
           TØIF=0;
          }
       }
                                                PIC Programming in C/TImer 0,1,2 and 3
07-04-2025
```


The timer TMR1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter with two 8-Bit registers TMR1H/TMR1L
- Readable and writable
- software programmable Prescaler up to 1:8
- Internal or external clock select
- Interrupt on overflow from FFFFh to 00h
- Edge select for external clock

T1CON

'1' = Bit is set

T1CON: TIMER1 CONTROL REGISTER

'0' = Bit is cleared

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0
R = Readable k	oit W = Wr	itable bit	U = Unimple	emented bit, read as	s '0' - n = V	alue at POR	

x = Bit is unknown

	INSTITUTI
\sim	. 1

- T1CON
- TMR1 (TMF
- PIR1

T1CKPS1:T1CKPS0:Timer1 Input Clock Prescale Select bits

11	=	1:8	prescale	value
10	=	1:4	prescale	value
01	=	1:2	prescale	value

00 = 1:1 prescale value

T1OSCEN: Timer1 Oscillator Enable Control bit

1-Oscillator is enabled

0-Oscillator is shut-off

- T1CON
- TMR1 (TMR
- PIR1

Registers used for Timer1

T1SYNC: Timer1 External Clock Input Synchronization Control bit

TMR1CS: Timer1 Clock Source Select bit

• 1-External clock from pin RC0/T1OSO/T1CKI (on the rising edge) 0-Internal clock (FOSC/4)

TMR1ON: Timer1 On bit

1-Enables Timer1 0-Stops Timer1

Timer1 has a register called the TMR1 register, which is 16 bits in size. Actually, the TMR1 consists of two 8-bits registers:

- TMR1H
- TMR1L

It increments from 0000h to the maximum value of 0xFFFFh (or 65,535 decimal). The TMR1 interrupt, if enabled, is generated on overflow which is latched in the interrupt flag bit, TMR1IF (PIR1<0>).

• This interrupt can be enabled/disabled by setting/clearing the TMR1 interrupt enable bit, TMR1IE (PIE1<0>). You can initialize the value of this register to whatever you want (not necessarily "0").