
Synchronized method

class Table{

synchronized void printTable(int n)

//synchronized method

{

for(int i=1;i<=5;i++) {

System.out.println(n*i);

try{ Thread.sleep(400); }

catch(Exception e) { System.out.println(e); }

}

}

}

class MyThread1 extends Thread {

Table t;

MyThread1(Table t){

this.t=t;

}

public void run(){

t.printTable(5);

}

}

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

}

}

public class TestSynchronization2{

public static void main(String args[]){

Table obj = new Table(); //only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}

Synchronized block

class Table{

void printTable(int n)

{

synchronized(this) //synchronized block

{

for(int i=1;i<=5;i++){

System.out.println(n*i);

try{ Thread.sleep(400); }

catch(Exception e){System.out.println(e);}

}

}

}//end of the method

}

class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t;

}

public void run(){

t.printTable(5);

}

}

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

}

}

public class TestSynchronizedBlock1

{

public static void main(String args[])

{

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}}

This code demonstrates the concept of synchronization in Java, where two threads (MyThread1

and MyThread2) attempt to print multiplication tables for 5 and 100, respectively, using the same

shared object Table. Since the printTable method is synchronized, only one thread can execute

this method at a time on the same object, ensuring that the multiplication tables do not overlap or

cause inconsistency.

Synchronized Method: The printTable(int n) method is marked synchronized. This ensures that

only one thread can execute the method on the same object at any given time. This is useful to

avoid issues like race conditions or corrupted data when multiple threads access shared

resources.

Thread Classes: MyThread1 and MyThread2 extend Thread and override the run() method.

Each thread calls the synchronized printTable method on the same Table object (obj), passing in

different values (5 and 100).

Thread Execution: t1.start() and t2.start() will start both threads concurrently. Because the

printTable method is synchronized, one thread will wait for the other to finish before it can start

executing the method.

Expected Output:

5

10

15

20

25

100

200

300

400

500

If the synchronized keyword is not used, both threads (MyThread1 and MyThread2) will be

able to execute the printTable method concurrently on the same object (Table). This can lead to

interleaved output, where the multiplication tables for 5 and 100 may get mixed up because both

threads might try to print at the same time.

Example Output (Without Synchronization):

5

100

200

10

300

15

20

400

25

500

30

35

40

45

50

Unpredictable Behavior: The exact interleaving of numbers depends on the thread scheduling

done by the Java Virtual Machine (JVM) and the underlying operating system. Each time you

run the program, the output could change because thread execution order is not guaranteed.

