
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

 DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COURSE NAME : 23CSB101- OBJECT ORIENTED PROGRAMMING

I YEAR /II SEMESTER

Unit III – EXCEPTION HANDLING AND MULTITHREADING

Topic : INTER-THREAD COMMUNICATION

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

INTER THREAD COMMUNICATION

• INTER THREAD COMMUNICATION : Inter-thread

communication is a mechanism in which a thread is paused

running in its critical section and another thread is allowed

to enter (or lock) in the same critical section to be

executed.

INTER THREAD COMMUNICATION

Difference between critical section and deadlock

Aspect Critical Section Deadlock

Definition

A part of the program that accesses shared

resources and needs to be executed by only one

thread at a time to ensure correctness.

A situation where two or more threads are stuck,

waiting on each other to release resources,

preventing any progress.

Issue Addressed
Ensures mutual exclusion to prevent race

conditions.

Prevents threads from getting stuck in a circular

waiting state.

Cause
Multiple threads trying to access a shared resource

simultaneously.

Circular waiting between threads for resources they

hold.

Solution Synchronization (locks, synchronized, etc.).
Avoid circular waits, use timeout mechanisms,

proper resource ordering.

Impact Leads to race conditions if not handled properly.
Leads to threads becoming stuck and never

completing their task.

Example
Using synchronized to ensure only one thread

accesses the resource at a time.

Two threads waiting for each other to release locks,

resulting in a freeze.

INTER THREAD COMMUNICATION

It is implemented by following methods of Object class and all these methods

can be called only from within a synchronized context.

INTER THREAD COMMUNICATION

Java Program: Inter-thread Communication, Suspending, Resuming, Stopping

class MyThread extends Thread {

 private boolean suspendFlag = false;

 private boolean stopFlag = false;

 public synchronized void customSuspend() {

 suspendFlag = true;

 }

 public synchronized void customResume() {

 suspendFlag = false;

 notify(); // Wake up the thread

 }

public synchronized void customStop() {

 stopFlag = true;

 notify(); // Wake up the thread if it's waiting

 }

 @Override

 public void run() {

 int i = 1;

 while (true) {

 synchronized (this) {

 while (suspendFlag) {

Cont…

try {

 wait(); // Pause the thread

 } catch (InterruptedException e) {

 System.out.println("Thread interrupted.");

 }

 }

 if (stopFlag) {

 break; // Exit the loop

 }

 }

Cont…

System.out.println("Thread running: " + i++);

 try {

 Thread.sleep(500);

 } catch (InterruptedException e) {

 System.out.println("Sleep interrupted.");

 }

 }

 System.out.println("Thread stopped.");

 }

}

Cont…

public class ThreadControlDemo {
 public static void main(String[] args) {
 MyThread t = new MyThread();
 t.start();
 try {
 Thread.sleep(2000);
 t.customSuspend();
 System.out.println("Thread suspended.");
 Thread.sleep(2000);
 t.customResume();
 System.out.println("Thread resumed.");
 Thread.sleep(2000);
 t.customStop();
 System.out.println("Thread stopped request sent.");
 } catch (InterruptedException e) {
 System.out.println("Main thread interrupted.");
 }
 }
}

Output:

Thread running: 1
Thread running: 2
Thread running: 3
Thread running: 4
Thread suspended.
Thread resumed.
Thread running: 5
Thread running: 6
Thread running: 7
Thread running: 8
Thread stopped request sent.
Thread stopped.

EXAMPLE:
simple bank transaction operations with inter-thread communication:

class Customer{

int Balance=10000;

synchronized void withdraw(int amount)

{

System.out.println("going to withdraw..."+amount);

if(Balance<amount)

{

System.out.println("Less balance; Balance = Rs. "+Balance+"\nWaiting for deposit...\n");

CONT…

EXAMPLE:
try

{

wait();

}

catch(Exception e){}

}

Balance-=amount;

System.out.println("withdraw completed...");

}

CONT…

EXAMPLE:

synchronized void deposit(int amount)

{

System.out.println("going to deposit... Rs. "+amount);

Balance+=amount;

System.out.println("deposit completed... Balance = "+Balance);

notify();

}

}

CONT…

EXAMPLE:

class ThreadCommn

{

public static void main(String args[]) {

Customer c=new Customer();

new Thread()

{

public void run(){c.withdraw(20000);}

}.start();

new Thread(){

public void run(){c.deposit(15000);}

}.start();

}

}

EXAMPLE:

class ThreadCommn

{

public static void main(String args[]) {

Customer c=new Customer();

new Thread()

{

public void run(){c.withdraw(20000);}

}.start();

new Thread(){

public void run(){c.deposit(15000);}

}.start();

}

}

Output:

going to withdraw...20000

Less balance; Balance = Rs. 10000

EXAMPLE:

Output:

going to withdraw...20000

Less balance; Balance = Rs. 10000

Waiting for deposit...

going to deposit... Rs. 15000

deposit completed... Balance = 25000

withdraw completed...

`

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

	Slide 1: SNS COLLEGE OF ENGINEERING
	Slide 2: INTER THREAD COMMUNICATION
	Slide 3: INTER THREAD COMMUNICATION
	Slide 4: INTER THREAD COMMUNICATION
	Slide 5: INTER THREAD COMMUNICATION
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: EXAMPLE:
	Slide 13: EXAMPLE:
	Slide 14: EXAMPLE:
	Slide 15: EXAMPLE:
	Slide 16: EXAMPLE:
	Slide 17: EXAMPLE:
	Slide 18: `

