

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 23CS207 - DATABASE MANAGEMENT SYSTEMS

II YEAR / IV SEMESTER

Unit 3- Database Design

Topic 3 : THIRD NORMAL FORM

4/11/2025

23CS207 - DATABASE MANAGEMENT SYSTEMS / K.KARTHIKEYAN /AP-CSE,SNSCE.

Third Normal Form

• Third Normal form (3NF)

- A table design is said to be in 3NF if both the following conditions hold:
- 1. Table must be in 2NF
- 2. <u>Transitive functional dependency</u> of non-prime attribute on any super key should be removed.
- 3. An attribute that is not part of any <u>candidate key</u> is known as non-prime attribute.
- In other words 3NF can be explained like this: A table is in 3NF if it is in 2NF and for each functional dependency X-> Y at least one of the following conditions hold:
- 1. X is a super key of table
- 2. Y is a prime attribute of table
- 3. An attribute that is a part of one of the candidate keys is known as prime attribute.

4/11/2025

Cont..

• Example: Suppose a company wants to store the complete address of each employee, they create a table named employee_details that looks like this:

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip}...so on

Candidate Keys: {emp_id}

Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any candidate keys.

p_id	emp_nam e	emp_zip	emp_stat e	emp_city	emp_distr ict
1001	John	282005	UP	Agra	Dayal Bagh
1002	Ajeet	222008	TN	Chennai	M-City
1006	Lora	282007	TN	Chennai	Urrapakka m
1101	Lilly	292008	UK	Pauri	Bhagwan
1201	Steve	222999	MP	Gwalior	Ratan

- Here, emp_state, emp_city & emp_district dependent on emp_zip. And,
- emp_zip is dependent on emp_id that makes non-prime attributes (emp_state, emp_city & emp_district) transitively dependent on super key (emp_id).
- This violates the rule of 3NF.
- To make this table complies with 3NF we have to break the table into two tables to remove the transitive dependency:

Employee Table:

emp_id	emp_na me	emp_zip
1001	John	282005
1002	Ajeet	222008
1006	Lora	282007
1101	Lilly	292008
1201	Steve	222999

emp_zip	emp_state	emp_city	emp_distri ct
282005	UP	Agra	Dayal Bagh
222008	TN	Chennai	M-City
282007	TN	Chennai	Urrapakka m
292008	UK	Pauri	Bhagwan
222999	MP	Gwalior	Ratan

4/11/2025

23CS207 - DATABASE MANAGEMENT SYSTEMS / K.KARTHIKEYAN /AP-CSE,SNSCE.

Advantages of 3 normal form

- The advantages of removing transitive dependencies are mainly twofold.
- First, the amount of data duplication is reduced and therefore your database becomes smaller.
- The second advantage is data integrity.

Boyce-Codd Normal Form

- For a table to satisfy the Boyce-Codd Normal Form, it should satisfy the following two conditions:
- 1. It should be in the **Third Normal Form**.
- 2. And, for any dependency $A \rightarrow B$, A should be a **super key**.

	1	
S_id	subject	professor
101	Java	P.Java
101	C++	Р.Срр
102	Java	P.Java2
103	C#	P.Chash
104	Java	P.Java

Cont..

In the table above:

•One student can enrol for multiple subjects. For example, student with **student_id** 101, has opted for subjects - Java & C++

•For each subject, a professor is assigned to the student.

•And, there can be multiple professors teaching one subject like we have for Java.

Cont..

What do you think should be the **Primary Key**? Well, in the table above student id,

subject together form the primary key, because

usingstudent_id and subject, we can find all the columns of the table.

one professor teaches only one subject, but one subject may have two different professors. Hence, there is a dependency between subject and professor here, where subject depends on the professor name. This table satisfies the **1st Normal form** because all the values are atomic, column names are unique and all the values stored in a particular column are of same domain. This table also satisfies the **2nd Normal Form** as their is no **Partial Dependency**. And, there is no **Transitive Dependency**, hence the table also satisfies the **3rd Normal Form**. But this table is not in **Boyce-Codd Normal Form**.

Student Table

Why this table is not in BCNF?

In the table above, student_id, subject form primary key, which means subject column is a prime attribute.

But, there is one more dependency, professor \rightarrow subject. And while subject is a prime attribute, professor is a **non-prime attribute**, which is not allowed by BCNF.

student_id	p_id
101	1
101	2

Professor Table

p_id	profess or	subject
1	P.Java	Java
2	Р.Срр	C++
and so c	on	

Thank you

4/11/2025

23CS207 - DATABASE MANAGEMENT SYSTEMS / K.KARTHIKEYAN /AP-CSE,SNSCE.

11/11