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B tree

• B-Tree is a self-balancing search tree. In most of 
the other self-balancing search trees (like AVL and 
Red-Black Trees)

(OR)
• A B-tree is a self-balancing tree data structure

that maintains sorted data and allows searches,
sequential access, insertions, and deletions in
logarithmic time. The B-tree is a generalization of
a binary search tree in that a node can have more
than two children
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Cont..

• To understand the use of B-Trees, we must 
think of the huge amount of data that cannot 
fit in main memory 

• The main idea of using B-Trees is to reduce the 
number of disk accesses.
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Cont ..

• Considerations for disk-based storage  
systems.

• Indexed Sequential Access Method 
(ISAM)

• m-way search trees

• B-trees
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Properties of B-Tree
• B-Tree of Order m has the following properties...
• Property #1 - All leaf nodes must be at same level.
• Property #2 - All nodes except root must have at least [m/2]-

1 keys and maximum of m-1 keys.
• Property #3 - All non leaf nodes except root (i.e. all internal 

nodes) must have at least m/2 children.
• Property #4 - If the root node is a non leaf node, then it must 

have atleast 2 children.
• Property #5 - A non leaf node with n-1 keys must 

have n number of children.
• Property #6 - All the key values in a node must be in Ascending 

Order.
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Insertion 

• Step 1 - Check whether tree is Empty.
• Step 2 - If tree is Empty, then create a new 

node with new key value and insert it into the 
tree as a root node.

• Step 3 - If tree is Not Empty, then find the 
suitable leaf node to which the new key value 
is added using Binary Search Tree logic.
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Cont..

• Step 4 - If that leaf node has empty position, add the new 
key value to that leaf node in ascending order of key value 
within the node.

• Step 5 - If that leaf node is already full, split that leaf node 
by sending middle value to its parent node. Repeat the 
same until the sending value is fixed into a node.

• Step 6 - If the spilting is performed at root node then the 
middle value becomes new root node for the tree and the 
height of the tree is increased by one.
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Insertions Algorithm 
• def insert (entry) :

– Find target leaf L
– if L has less than m – 2 entries :

• add the entry
else :

• Allocate new leaf L'
• Pick the m/2 highest keys of L and move them to L'
• Insert highest key of L and corresponding address leaf 

into the parent node
• If the parent is full :

– Split it and add the middle key to its parent node
• Repeat until a parent is found that is not full
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Deletion

• def delete (record) :
– Locate target leaf and remove the entry
– If leaf is less than half full:

• Try to re-distribute, taking from sibling (adjacent node 
with same parent) 

• If re-distribution fails:
– Merge leaf and sibling
– Delete entry to one of the two merged leaves
– Merge could propagate to root
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Problem 

• Construct  a B-Tree of order 5 following 
numbers 

• 3,14,7,1,8,5,11,17,13,6,23,12,20,26,4,16,18,
24,25,19 

the order is 5 
Mar child =5 
Min child= 5 / 2 =2.5   and Max keys   = m-1 ,
i.e 5-1=4 , Min keys =(5/2)-1=2.5-1=1.5 
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B+ Tree
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Advantages of B-tree

• The B-tree uses all of the ideas described above. 
In particular, a B-tree:

• keeps keys in sorted order for sequential 
traversing

• uses a hierarchical index to minimize the number 
of disk reads

• uses partially full blocks to speed insertions and 
deletions

• keeps the index balanced with a recursive 
algorithm
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Advantages of B+tree
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B Tree Vs B+ Tree
SN B Tree B+ Tree

1
Search keys can not be 
repeatedly stored.

Redundant search keys 
can be present.

2
Data can be stored in leaf 
nodes as well as internal 
nodes

Data can only be stored 
on the leaf nodes.

3
Searching for some data is a 
slower process since data can 
be found on internal nodes as 
well as on the leaf nodes.

Searching is 
comparatively faster as 
data can only be found 
on the leaf nodes.

4
Deletion of internal nodes are 
so complicated and time 
consuming.

Deletion will never be a 
complexed process since 
element will always be 
deleted from the leaf 
nodes.

5
Leaf nodes can not be linked 
together.

Leaf nodes are linked 
together to make the 
search operations more 
efficient.
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Thank you 
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