
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution
Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

COURSE NAME : 23CST207
- DATABASE MANAGEMENT SYSTEMS

II YEAR / IV SEMESTER

Unit 5- Physical Storage and MongoDB
Topic 5 : B tree and B+ Tree

4/13/2025 23CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE 1

B tree

• B-Tree is a self-balancing search tree. In most of
the other self-balancing search trees (like AVL and
Red-Black Trees)

(OR)
• A B-tree is a self-balancing tree data structure

that maintains sorted data and allows searches,
sequential access, insertions, and deletions in
logarithmic time. The B-tree is a generalization of
a binary search tree in that a node can have more
than two children

4/13/2025 2/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Cont..

• To understand the use of B-Trees, we must
think of the huge amount of data that cannot
fit in main memory

• The main idea of using B-Trees is to reduce the
number of disk accesses.

4/13/2025 3/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Cont ..

• Considerations for disk-based storage
systems.

• Indexed Sequential Access Method
(ISAM)

• m-way search trees

• B-trees

4/13/2025 4/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Properties of B-Tree
• B-Tree of Order m has the following properties...
• Property #1 - All leaf nodes must be at same level.
• Property #2 - All nodes except root must have at least [m/2]-

1 keys and maximum of m-1 keys.
• Property #3 - All non leaf nodes except root (i.e. all internal

nodes) must have at least m/2 children.
• Property #4 - If the root node is a non leaf node, then it must

have atleast 2 children.
• Property #5 - A non leaf node with n-1 keys must

have n number of children.
• Property #6 - All the key values in a node must be in Ascending

Order.

4/13/2025 5/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Insertion

• Step 1 - Check whether tree is Empty.
• Step 2 - If tree is Empty, then create a new

node with new key value and insert it into the
tree as a root node.

• Step 3 - If tree is Not Empty, then find the
suitable leaf node to which the new key value
is added using Binary Search Tree logic.

4/13/2025 6/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Cont..

• Step 4 - If that leaf node has empty position, add the new
key value to that leaf node in ascending order of key value
within the node.

• Step 5 - If that leaf node is already full, split that leaf node
by sending middle value to its parent node. Repeat the
same until the sending value is fixed into a node.

• Step 6 - If the spilting is performed at root node then the
middle value becomes new root node for the tree and the
height of the tree is increased by one.

4/13/2025 7/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Insertions Algorithm
• def insert (entry) :

– Find target leaf L
– if L has less than m – 2 entries :

• add the entry
else :

• Allocate new leaf L'
• Pick the m/2 highest keys of L and move them to L'
• Insert highest key of L and corresponding address leaf

into the parent node
• If the parent is full :

– Split it and add the middle key to its parent node
• Repeat until a parent is found that is not full

4/13/2025 8/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Deletion

• def delete (record) :
– Locate target leaf and remove the entry
– If leaf is less than half full:

• Try to re-distribute, taking from sibling (adjacent node
with same parent)

• If re-distribution fails:
– Merge leaf and sibling
– Delete entry to one of the two merged leaves
– Merge could propagate to root

4/13/2025 9/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Problem

• Construct a B-Tree of order 5 following
numbers

• 3,14,7,1,8,5,11,17,13,6,23,12,20,26,4,16,18,
24,25,19

the order is 5
Mar child =5
Min child= 5 / 2 =2.5 and Max keys = m-1 ,
i.e 5-1=4 , Min keys =(5/2)-1=2.5-1=1.5

4/13/2025 10/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Cont..

4/13/2025 11/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Cont..

4/13/2025 12/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Cont..

4/13/2025 13/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Cont..

4/13/2025 14/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

B+ Tree

4/13/2025 15/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Cont..

4/13/2025 16/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Cont..

4/13/2025 17/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Cont..

4/13/2025 18/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Advantages of B-tree

• The B-tree uses all of the ideas described above.
In particular, a B-tree:

• keeps keys in sorted order for sequential
traversing

• uses a hierarchical index to minimize the number
of disk reads

• uses partially full blocks to speed insertions and
deletions

• keeps the index balanced with a recursive
algorithm

4/13/2025 19/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Advantages of B+tree

4/13/2025 20/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

B Tree Vs B+ Tree
SN B Tree B+ Tree

1
Search keys can not be
repeatedly stored.

Redundant search keys
can be present.

2
Data can be stored in leaf
nodes as well as internal
nodes

Data can only be stored
on the leaf nodes.

3
Searching for some data is a
slower process since data can
be found on internal nodes as
well as on the leaf nodes.

Searching is
comparatively faster as
data can only be found
on the leaf nodes.

4
Deletion of internal nodes are
so complicated and time
consuming.

Deletion will never be a
complexed process since
element will always be
deleted from the leaf
nodes.

5
Leaf nodes can not be linked
together.

Leaf nodes are linked
together to make the
search operations more
efficient.

4/13/2025 21/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

Thank you

4/13/2025 22/2223CST207 DBMS/ K.KARTHIKEYAN/AP-
CSE/SNSCE

