

SNS College of Engineering

An Autonomous Institution

3Purpose rocess eople Culture

Redesigning Common Mind & Business Towards Excellence

Accredited by NAAC-UGC with 'A' Grade,
Approved by AICTE, Recognized by UGC and Affiliated to Anna University, Chennai

Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Wireless Personal Area Networks (WPAN)-ZigBee

Prepared by Dr.M.Sudha

Associate Professor, ECE SNSCE

Zigbee

- ZigBee is a technological standard designed for control and sensor networks
- Based on the IEEE 802.15.4 Standard
- Created by the ZigBee Alliance
- Operates in Personal Area Networks (PAN's) and device-to-device networks
- Connectivity between small packet devices
- Control of lights, switches, thermostats, appliances, etc.

History

- Developement started 1998, when many enginereers realized that WiFi and Bluetooth were going to be unsuitable for many applications
- IEEE 802.15.4 standard was completed in May 2003

Zigbee Alliance

- Organization defining global standards for reliable, cost-effective, low power wireless applications
- A consortium of end users and solution providers, primarily responsible for the development of the 802.15.4 standard
- Developing applications and network capability utilizing the 802.15.4 packet delivery mechanism

Characteristics

- Low cost
- Low power consumption
- · Low data rate
- Relatively short transmission range
- Scalability
- Reliability
- Flexible protocol design suitable for many applications

Security

- Encryption specified for MAC, Network and APS layers
- Encryprion/Authentication mode CCM(CTR +CBC-MAC)
 - CTR is a counter based encryption mode
 - CBC-MAC provides data integrity
- All security is based on 128bit key and AES-128 block encryption method

Applications

ZigBee/IEEE 802.15.4

IEEE 802.15.4

Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork

IEEE 802.15.4 Architecture

IEEE 802.15.4 Physical Layer

Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork

PHY functionalities:

- Activation and deactivation of the radio transceiver
- Energy detection within the current channel
- Link quality indication for received packets
- Clear channel assessment for CSMA-CA
- Channel frequency selection
- Data transmission and reception

PHY frame structure

- PHY packet fields
 - Preamble (32 bits) synchronization
 - Start of packet delimiter (8 bits) shall be formatted as "11100101"
 - PHY header (8 bits) PSDU length
 - PSDU (0 to 127 bytes) data field

Sync Header		PHY Header		PHY Payload	
Preamble	Start of Packet Delimiter	Frame Length (7 bit)	Reserve (1 bit)	PHY Service Data Unit (PSDU)	
4 Octets	1 Octets	1 Octets		0-127 Bytes	

- Star Topology
 - Advantage
 - Easy to synchronize
 - Low latency
 - Disadvantage
 - · Small scale

- Mesh Topology
 - Advantage
 - Robust multihop communication
 - Network is more flexible
 - Lower latency
 - Disadvantage
 - Route discovery is costly
 - Needs storage for routing table

- Cluster Tree
 - Advantage
 - Low routing cost
 - Allow multihop communication
 - Disadvantage
 - Route reconstruction is costly
 - Latency may be quite long

Zigbee and Bluetooth Comparison

- Optimized for different applications
 - ZigBee
 - Smaller packets over large network
 - Mostly Static networks with many, infrequently used devices
 - Home automation, toys, remote controls, etc.
 - Bluetooth
 - Larger packets over small network
 - Ad-hoc networks
 - File transfer
 - Screen graphics, pictures, handsfree audio, Mobile phones, headsets, PDAs, etc.

Zigbee and Bluetooth Comparison

Feature(s)	Bluetooth	ZigBee
Power Profile	days	years
Complexity	complex	Simple
Nodes/Master	7	64000
Latency	10 seconds	30 ms – 1s
Range	10m	70m ~ 300m
Extendibility	no	Yes
Data Rate	1 Mbps	250 Kbps
Security	64bit, 128bit	128bit AES and Application Layer

Zigbee and Bluetooth Comparison

sign Thinking FrameWork

