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Introduction to Symbolic Execution

What is Symbolic Execution?

• Symbolic execution is a software testing technique where, instead of running a program with

actual input values (like 5 or "abc"), we use symbolic variables (like x, y, or input1) to represent

any possible input.

• This allows the program to explore all possible paths it could take depending on the input

values.

Example:

• Traditional testing: test with x = 5Symbolic execution: test with x = any value, then check what

the program would do in every case (x > 0, x = 0, x < 0)
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Key Concepts

Term Description

Symbolic Variable
A placeholder input (like x) representing any 
possible value

Path Condition
A set of conditions that must be true to follow a 
specific logic path in the program

Execution Path
A flow of program execution based on decisions 
(like if-else)

Constraint Solver
A tool that determines real inputs which satisfy 
the path condition

Path Explosion
Too many possible paths caused by many 
conditions or loops

Object State
The current data and behavior of an object in OOP 
(e.g., balance = 0)
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How Symbolic Execution Works

• Inputs as Symbols: Inputs are not real numbers but variables like x, y, etc.

• Branching: Every decision in the code (if, switch) creates new paths.

• Path Conditions: For each path, collect the conditions needed to follow it.

• Constraint Solving: Use a solver to find real values that match the path conditions.

• Test Generation: Each valid path can be turned into an automatic test case.
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Example

def check_number(x):
if x > 5:

return "Greater"
else:

return "Smaller or Equal“
Normal Execution Example:
Case 1: check_number(10) → "Greater“
Case 2: check_number(3) → "Smaller or Equal“
Symbolic Execution Example:
We say: Let x be any value, not a specific number.
We look at the program and follow both possible paths:
Path 1: Condition: x > 5
Output: "Greater“
Path 2: Condition: x <= 5
Output: "Smaller or Equal"
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Comparison between Normal and 

Symbolic Exceution
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Why Symbolic Execution is Useful in OOP

In object-oriented systems:

• We deal with objects, each having different states

• Each object has methods that behave differently depending on inputs and state

Symbolic execution:

• Tests how methods behave with all input combinations

• Detects errors in logic early

• Validates how object states change over time
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Advantages

• Finds bugs early in development

• Helps cover all logic paths (even rare ones)

• Generates test cases automatically

• Great for testing object behaviors and interactions
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Limitations

• Can be slow or complex for large programs (due to path explosion)

• May not handle programs with dynamic or external inputs well

• Limited for systems that rely heavily on user interface or hardware
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