
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Artificial Intelligence and Data Science

4/25/2025 1
SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED SOFTWARE

ENGINEERING/SNSCE

23ITT203 Object Oriented Software Engineering

4/25/2025 2SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED SOFTWARE
ENGINEERING/SNSCE

Symbolic Execution

4/25/2025 3SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED
SOFTWARE ENGINEERING/SNSCE

Introduction to Symbolic Execution

What is Symbolic Execution?

• Symbolic execution is a software testing technique where, instead of running a program with

actual input values (like 5 or "abc"), we use symbolic variables (like x, y, or input1) to represent

any possible input.

• This allows the program to explore all possible paths it could take depending on the input

values.

Example:

• Traditional testing: test with x = 5Symbolic execution: test with x = any value, then check what

the program would do in every case (x > 0, x = 0, x < 0)

4/25/2025 4SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED
SOFTWARE ENGINEERING/SNSCE

Key Concepts

Term Description

Symbolic Variable
A placeholder input (like x) representing any
possible value

Path Condition
A set of conditions that must be true to follow a
specific logic path in the program

Execution Path
A flow of program execution based on decisions
(like if-else)

Constraint Solver
A tool that determines real inputs which satisfy
the path condition

Path Explosion
Too many possible paths caused by many
conditions or loops

Object State
The current data and behavior of an object in OOP
(e.g., balance = 0)

4/25/2025 5SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED
SOFTWARE ENGINEERING/SNSCE

How Symbolic Execution Works

• Inputs as Symbols: Inputs are not real numbers but variables like x, y, etc.

• Branching: Every decision in the code (if, switch) creates new paths.

• Path Conditions: For each path, collect the conditions needed to follow it.

• Constraint Solving: Use a solver to find real values that match the path conditions.

• Test Generation: Each valid path can be turned into an automatic test case.

4/25/2025 6SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED
SOFTWARE ENGINEERING/SNSCE

Example

def check_number(x):
if x > 5:

return "Greater"
else:

return "Smaller or Equal“
Normal Execution Example:
Case 1: check_number(10) → "Greater“
Case 2: check_number(3) → "Smaller or Equal“
Symbolic Execution Example:
We say: Let x be any value, not a specific number.
We look at the program and follow both possible paths:
Path 1: Condition: x > 5
Output: "Greater“
Path 2: Condition: x <= 5
Output: "Smaller or Equal"

4/25/2025 7SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED
SOFTWARE ENGINEERING/SNSCE

Comparison between Normal and

Symbolic Exceution

4/25/2025 8SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED
SOFTWARE ENGINEERING/SNSCE

Why Symbolic Execution is Useful in OOP

In object-oriented systems:

• We deal with objects, each having different states

• Each object has methods that behave differently depending on inputs and state

Symbolic execution:

• Tests how methods behave with all input combinations

• Detects errors in logic early

• Validates how object states change over time

4/25/2025 9SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED
SOFTWARE ENGINEERING/SNSCE

Advantages

• Finds bugs early in development

• Helps cover all logic paths (even rare ones)

• Generates test cases automatically

• Great for testing object behaviors and interactions

4/25/2025 10SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED
SOFTWARE ENGINEERING/SNSCE

Limitations

• Can be slow or complex for large programs (due to path explosion)

• May not handle programs with dynamic or external inputs well

• Limited for systems that rely heavily on user interface or hardware

4/25/2025 11SOWMIYA R/AP/AI&DS/23ITT203 OBJECT ORIENTED
SOFTWARE ENGINEERING/SNSCE

