

# **SNS COLLEGE OF ENGINEERING**

Kurumbapalayam (Po), Coimbatore – 641 107 Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai



## Web Security

### **1. Web Security Considerations**

Web security aims to protect data transmitted over the internet and prevent malicious activities such as hacking, phishing, and data breaches.

Key considerations include:

- **Confidentiality:** Protect sensitive information from unauthorized access.
- **Integrity:** Ensure that data is not altered during transmission.
- Authentication: Verify the identities of users and servers.
- Authorization: Grant access rights based on user identity.
- Availability: Ensure that services are available when needed (protect against Denial of Service attacks).

Common Threats:

- Man-in-the-Middle (MITM) Attacks
- Phishing and Social Engineering
- Cross-Site Scripting (XSS)
- Cross-Site Request Forgery (CSRF)
- SQL Injection
- Session Hijacking

Security Best Practices:

- Use HTTPS instead of HTTP.
- Implement strong password policies.
- Validate and sanitize all user inputs.
- Regularly update and patch systems.
- Use firewalls, intrusion detection/prevention systems.

#### 2. Secure Socket Layer (SSL)

**SSL** is a cryptographic protocol designed to provide secure communication over a network.

Key Features:

- Encryption: Encrypts the data transmitted between a user and a web server.
- Authentication: Uses certificates (issued by Certificate Authorities) to verify server identity.
- **Data Integrity:** Ensures that data is not tampered with during transmission.

SSL Handshake Process:

- 1. **Client Hello:** The client sends a hello message with SSL version, supported cipher suites, and a random number.
- 2. Server Hello: The server responds with its own random number, chosen cipher suite, and its digital certificate.

- 3. Certificate Verification: The client verifies the server's certificate.
- 4. Key Exchange: The client and server exchange keys to establish a shared secret.
- 5. Session Keys: Both parties generate session keys from the shared secret.
- 6. Secure Communication: All subsequent communication is encrypted using these keys.

#### **Important:**

• SSL 2.0 and SSL 3.0 are considered insecure and deprecated.

#### **3.** Transport Layer Security (TLS)

**TLS** is the successor to SSL. It provides better security and performance.

Key Features:

- Stronger encryption algorithms than SSL.
- Improved handshake process to prevent downgrade attacks.
- Support for Forward Secrecy (keys are not reused).
- Protection against many modern vulnerabilities.

TLS Versions:

- TLS 1.0: Introduced in 1999; now deprecated.
- TLS 1.1: Also deprecated.
- **TLS 1.2:** Widely used; strong and secure.
- **TLS 1.3:** Released in 2018; faster and even more secure (removes outdated cryptographic algorithms).

TLS Handshake (Simplified):

- 1. Negotiation: Client and server agree on TLS version and cipher suite.
- 2. Authentication: Server sends its certificate; optionally, the client does too.
- 3. Key Exchange: A shared secret is established securely.
- 4. Secure Session: Encryption keys derived and used for encrypted communication.

Differences Between SSL and TLS:

| Aspect      | SSL          | TLS                          |
|-------------|--------------|------------------------------|
| Security    | Less secure  | More secure                  |
| Versioning  | SSL 2.0, 3.0 | TLS 1.0, 1.1, 1.2, 1.3       |
| Speed       | Slower       | Faster                       |
| Usage Today | v Obsolete   | Actively used (TLS 1.2, 1.3) |

#### Summary

- Web Security protects web applications from attacks.
- SSL was the original protocol for securing web communications.
- **TLS** replaced SSL and is now the standard for web security.
- Modern websites should use TLS 1.2 or TLS 1.3 with strong cipher suites.