

Mt = Mt. K. Kd Kevel Bevel Gears & S $M_1 = \frac{60 \times P}{2 \pi N_1} = \frac{60 \times 1875}{2\pi \times 800} = 22.38 \text{ N-m}, \text{ and}$ SIX NI HA where 60 ... (initially assumed) $\mathbf{K} \cdot \mathbf{K}_0 = 1.3.$ $[M_t] = 22.38 \times 1.3 = 29.095 \text{ N-m}$ S Calculation of E_{eq} , $[\sigma_b]$ and $[\sigma_c]$: $(\widehat{E}_{eq}) = 1.4 \times 10^5 \text{ N/mm}^2 \text{ for cast iron, } \sigma_u > 280 \text{ N/mm}^2, from$ Table 5.20. \checkmark To find (σ_b) We know that the design bending stress, 8.18 $[\sigma_b] = \frac{1.4 \text{ K}_{bl}}{n \cdot \text{K}_{a}} \times \sigma_{-1}$ for rotation in one direction 8.18 where 82° $K_{bl} = \sqrt[9]{\frac{10^7}{N}} = \sqrt[9]{\frac{10^7}{29.952 \times 10^7}} = 0.8852$, for C.I, from Table 5.14 8.19 (Kg) == 1.2, for C.I, from Table 5.15. 8.4 @=2, from Table 5.17, and $8.19 \left(\sigma_{-1} \right) = 0.45 \, \sigma_u$ $S^{\text{qc}} = 350 \text{ N/mm}^2$, for C.I., from Table 5.3 $S^{\text{qc}} = 0.45 \times 350 = 157.5 \text{ N/mm}^2$ $[\sigma_b] = \frac{1.4 \times 0.8852}{2 \times 1.2} \times 157.5 = 81.33 \text{ N/mm}^2$ \checkmark To find (σ_c) We know that the design contact stress, 8.16 $[\sigma_c] = C_B \times HB \times K_{cl}$ 8.16 (CB) = 2.3, from Table 5.18, where 8.16 (HB) = 200 to 260, from Table 5.18, and 8.17 $(K_{cl}) = \sqrt[6]{\frac{10^7}{N}} = \sqrt[6]{\frac{10^7}{29.952 \times 10^7}}$ = 0.833, for C.I, from Table 5.19. $([\sigma_c]) = 2.3 \times 260 \times 0.833 = 498.08 \text{ N/mm}^2$ 6. Calculation of cone distance (R): P561 We know that, $\mathbb{R} \ge \psi_y \sqrt{i^2 + 1} \sqrt[3]{\left[\frac{0.72}{(\psi_y - 0.5)[\sigma_c]}\right]^2} \times \frac{\mathbb{E}_{eq}[M_t]}{i}$

where
$$\psi_y = R/b = 3$$
, initially assumed.

7 Assume
$$(z_1) = 20$$
; Then $(z_2 = i \times z_1) = 2 \times 20 = 40$

Virtual number of teeth:
$$z_{v1} = \frac{z_1}{\cos \delta_1} = \frac{20}{\cos 26.57^{\circ}} \approx 23 \text{ ; and}$$

$$z_{v2} = \frac{z_2}{\cos \delta_2} = \frac{40}{\cos 63.43^{\circ}} \approx 90$$

8 Calculation of transverse module (m):

We know that,
$$m_t = \frac{R}{0.5\sqrt{z_1^2 + z_2^2}} = \frac{51}{0.5\sqrt{20^2 + 40^2}} = 2.28 \text{ mm}$$

From Table 5.8, the nearest higher standard transverse module is 2.5 mm

Revision of cone distance (R):

We know that,
$$R = 0.5 m_t \sqrt{z_1^2 + z_2^2} = 0.5 \times 2.5 \sqrt{20^2 + 40^2} = 55.9 \text{ mm}$$

10. Calculation of b, may, d law y and \(\psi_y \):

Face width (b):
$$b = \frac{R}{\Psi_y} = \frac{55.9}{3} = 18.63 \text{ mm}$$

✓ Average module
$$(m_{av})$$
: $m_{av} = m_1 - \frac{b \sin \delta_1}{z_1} = 2.5 - \frac{18.63 \times \sin 26.57^\circ}{20}$

Average pcd of pinion
$$(d_{1av})$$
 $d_{1av} = m_{av} \times z_1 = 2.083 \times 20 = 41.66 \text{ m}$

$$\checkmark \text{ Pitch line velocity } (v): \qquad v = \frac{\pi \times d_{1av} \times N_1}{60} = \frac{\pi \times 41.66 \times 10^{-3} \times 800}{60}$$

$$= 1.745 \text{ m/s}$$

$$\checkmark$$
 To find ψ_y : $\psi_y = \frac{b}{d_{1ay}} = \frac{18.63}{41.66} = 0.447$

11 IS quality 6 bevel gear is assumed, from Table 5.22.

2 Revision of design torque [M,]:

We know that
$$[M_t] = M_t \times K \times K_d \otimes 15$$

where
$$K = 1.1$$
, for $b/d_{1av} \le 1$, from Table 7.2, and $k = 1.35$, for IS quality 6 and v upto 3 m/s, from Table 5.12.
 $k = 1.35$, for IS quality 6 and v upto 3 m/s, from Table 5.12.

13 Check for bending: We know that the induced bending stress

$$8.19^{R} \qquad \delta_{b} = \frac{R \sqrt{i^{2} + 1} / [M_{t}]}{(R - 0.5 b)^{2} \times b \times m_{t} \times y_{v1}}$$

where $y_{vl} \approx 0.408$, for $z_{vl} = 23$, from Table 5.13

$$\overline{O}_b = \frac{55.9\sqrt{2^2 + 1} \times 33.24 \times 10^3}{(55.9 - 0.5 \times 18.63)^2 \times 18.63 \times 2.5 \times 0.408}$$
= 100.75 N/mm²

We find $\sigma_b > [\sigma_b]$. Thus the design is not satisfactory.

Trial 2: Now we will try with increased transverse module 3 mm. Repeating from Ster again, we get

$$R = 0.5 \times m_t \times \sqrt{z_1^2 + z_2^2} = 0.5 \times 3 \times \sqrt{20^2 + 40^2} = 67.08 \text{ m}$$

$$b = \frac{R}{\Psi_y} = \frac{67.08}{3} = 22.36 \text{ mm}$$

$$m_{av} = m_t - \frac{b \sin \delta_1}{z_1} = 3 - \frac{22.36 \times \sin 26.57^{\circ}}{20} = 2.5 \text{ mm}$$

$$d_{1av} = m_{av} \times z_1 = 2.5 \times 20 = 50 \text{ mm}$$

$$8.15 \qquad v = \frac{\pi \times d_{1av} \times N_1}{60} = \frac{\pi \times 50 \times 10^{-3} \times 800}{60} = 2.094 \text{ m/s}$$

$$\Psi_y = \frac{b}{d_{1av}} = \frac{22.36}{50} = 0.447$$

IS quality 6 bevel gear is assumed.

$$(K) = 1.1, \text{ from Table 7.2}$$

$$(K_d) = 1.35, \text{ from Table 5.12}$$

$$[M_t] = M_t \times K \times K_d = 22.38 \times 1.1 \times 1.35$$

$$= 33.24 \text{ N-m}$$

$$(5) = \frac{67.08 \sqrt{2^2 + 1} \times 33.24 \times 10^3}{(67.08 - 0.5 \times 22.36)^2 \times 22.36 \times 3 \times 0.408} = 58.3 \text{ N/mm}^2$$

Now we find $\sigma_b < [\sigma_b]$. Thus the design is satisfactory.

Check for wear strength: We know that the induced contact stress,

Check for wear strength: We know that the induced contact stress,
$$\sigma_{c} = \frac{0.72}{(R - 0.5 b)} \left[\frac{\sqrt{(i^{2} + 1)^{3}}}{i \times b} \times E_{eq} \left[M_{I} \right]^{\frac{1}{2}} \right]^{\frac{1}{2}}$$

$$= \frac{0.72}{(67.08 - 0.5 \times 22.36)} \left[\frac{\sqrt{(2^2 + 1)^3}}{2 \times 22.36} \times 1.4 \times 10^5 \times 33.24 \times 10^3 \right]^{\frac{1}{2}}$$

$$= 439.33 \text{ N/mm}^2$$

We find $\sigma_c < [\sigma_c]$. Thus the design is satisfactory.

(15) Calculation of basic dimensions of pinion and gear: Refer Table 7.1

Transverse module: $(m_i) = 3 \text{ mm}$

Number of teeth: $(z_1)=20$; and $(z_2)=40$.

 $d_1 = m_t \times z_1 = 3 \times 20 = 60 \text{ mm}$; and Pitch circle diameter:

 $d_2 = m_t \times z_2 = 3 \times 40 = 120 \text{ mm}.$

(R) = 67.08 mmCone distance:

Face width: (b) = 22.36 mm

 $\delta_1 = 26.57^{\circ}$; and $\delta_2 = 63.43^{\circ}$ Pitch angles:

 $d_{a1} = m_t (z_1 + 2\cos\delta_1) = 3(20 + 2\cos 26.57^\circ)$ Tip diameter:

> = 65.37 mm; and $d_{a2} = m_t (z_2 + 2 \cos \delta_2) = 3 (40 + 2 \cos 63.43^\circ)$

 $= 122.68 \, \text{mm}$

 $f_0 = 1$ Height factor:

(c) = 0.2Clearance:

Addendum angle: $\tan \theta_{a1} = \tan \theta_{a2} = \frac{m_t \times f_0}{R} = \frac{3 \times 1}{67.08} = 0.0447$

 $\theta_{a1} = \theta_{a2} = 2.56^{\circ}$ or

Dedendum angle: $\tan \theta_{f1} = \tan \theta_{f2} = \frac{m_t (f_0 + c)}{R} = \frac{3 (1 + 0.2)}{67.08}$

8.38 = 0.05366

 $\theta_{f1} = \theta_{f2} = 3.07^{\circ}$

 $\delta_{a1} = \delta_1 + \theta_{a1} = 26.57^{\circ} + 2.56^{\circ} = 29.13^{\circ}$; and $\delta_{a2} = \delta_2 + \theta_{a2} = 63.43^{\circ} + 2.56^{\circ} = 65.99^{\circ}$ Tip angle: 8.30

Bevel	Gears 26.579 2.079
pela	Root angle: $\delta_{f1} = \delta_1 - \theta_{f1} = 26.57^\circ - 3.07^\circ = 23.5^\circ; \text{ and}$ $\delta_{f1} = \delta_1 - \theta_{f1} = 63.43^\circ - 3.07^\circ = 60.36^\circ$
8.39	0/2 - 02 - 0/2
1.0	Virtual number of teeth : $(\bar{z}_{\nu 1}) = 23$; and $(\bar{z}_{\nu 2}) = 90$.
	Design a straight bevel gear drive between two shafts at right
The second second second	Smood of the minion shall is 300 1.p.m. the specific gear when
	- m Dinion is of steel and wheel of cust
	to 10 wages The drive transmits 7.37 km.
	aday for 10 years. The drive it discounts and the latter it discounts are provided in the latter it discounts and the latter it discounts are provided in the latter in the lat
Tof	Design the bevel gear drive.
	olution:) Since the materials of pinion and gear are different, we have to design
pinion)	first and check the gear.
	Gear ratio: $(i) = \frac{N_1}{N_2} = \frac{360}{120} = 3$
	Pitch angles: $(\tan \delta_2 = i = 3)$ or $(\delta_2 = \tan^{-1}(3)) = 71.56^\circ$
	Then, $\delta_1 = 90^\circ - \delta_2 = 90^\circ - 71.56^\circ = 18.44^\circ$
2	Material selection: Pinion – C45 Steel, $\sigma_u = 700 \text{ N/mm}^2$ and $\sigma_y = 360 \text{ N/m}^2$
	$ \sqrt{.}^{\circ} \text{ Gear} - \text{CI grade 35}, \sigma_u = 350 \text{ N/mm}^2, \text{ from Table 5.3.} $
3.	Gear life in hours = $(2 \text{ hours/day}) \times (365 \text{ days / year} \times 10 \text{ years}) = 7300 \text{ hours}$
- :. C	Gear life in cycles, $(N) = 7300 \times 360 \times 60 = 15.768 \times 10^7$ cycles
4.0	Calculation of initial design torque [M]:
We k	now that, $8 \% [M_t] = M_t \times K \times K_d$
where	$\widehat{\mathbf{M}_{l}} = \frac{60 \times P}{2 \pi N_{1}} = \frac{60 \times 9.37 \times 10^{3}}{2 \pi \times 360} = 248.6 \text{ N-m, and}$
	$(K \cdot K_d) = 1.3$, initially assumed.
4	$(M_1) = 248.6 \times 1.3 = 323.28 \text{ N-m}$
<u>(5)</u> (Calculation of Eg, [ob] and [oc]
	Fo find E_{eq} : $E_{eq} = 1.7 \times 10^5 \text{ N/mm}^2$, from Table 5.20.
× 1	To find $[\sigma_{b1}]$; We know that the design bending stress for pinion,
	$[\sigma_{b1}] = \frac{1.4 \text{ K}_{bl}}{n \cdot \text{K}_{c}} \times \sigma_{-1}$, for rotation in one direction