Mt = Mt. K. Kd Kevel Bevel Gears & S $M_1 = \frac{60 \times P}{2 \pi N_1} = \frac{60 \times 1875}{2\pi \times 800} = 22.38 \text{ N-m}, \text{ and}$ SIX NI HA where 60 ... (initially assumed) $\mathbf{K} \cdot \mathbf{K}_0 = 1.3.$ $[M_t] = 22.38 \times 1.3 = 29.095 \text{ N-m}$ S Calculation of $E_{eq}$ , $[\sigma_b]$ and $[\sigma_c]$ : $(\widehat{E}_{eq}) = 1.4 \times 10^5 \text{ N/mm}^2 \text{ for cast iron, } \sigma_u > 280 \text{ N/mm}^2, from$ Table 5.20. $\checkmark$ To find $(\sigma_b)$ We know that the design bending stress, 8.18 $[\sigma_b] = \frac{1.4 \text{ K}_{bl}}{n \cdot \text{K}_{a}} \times \sigma_{-1}$ for rotation in one direction 8.18 where 82° $K_{bl} = \sqrt[9]{\frac{10^7}{N}} = \sqrt[9]{\frac{10^7}{29.952 \times 10^7}} = 0.8852$ , for C.I, from Table 5.14 8.19 (Kg) == 1.2, for C.I, from Table 5.15. 8.4 @=2, from Table 5.17, and $8.19 \left( \sigma_{-1} \right) = 0.45 \, \sigma_u$ $S^{\text{qc}} = 350 \text{ N/mm}^2$ , for C.I., from Table 5.3 $S^{\text{qc}} = 0.45 \times 350 = 157.5 \text{ N/mm}^2$ $[\sigma_b] = \frac{1.4 \times 0.8852}{2 \times 1.2} \times 157.5 = 81.33 \text{ N/mm}^2$ $\checkmark$ To find $(\sigma_c)$ We know that the design contact stress, 8.16 $[\sigma_c] = C_B \times HB \times K_{cl}$ 8.16 (CB) = 2.3, from Table 5.18, where 8.16 (HB) = 200 to 260, from Table 5.18, and 8.17 $(K_{cl}) = \sqrt[6]{\frac{10^7}{N}} = \sqrt[6]{\frac{10^7}{29.952 \times 10^7}}$ = 0.833, for C.I, from Table 5.19. $([\sigma_c]) = 2.3 \times 260 \times 0.833 = 498.08 \text{ N/mm}^2$ 6. Calculation of cone distance (R): P561 We know that, $\mathbb{R} \ge \psi_y \sqrt{i^2 + 1} \sqrt[3]{\left[\frac{0.72}{(\psi_y - 0.5)[\sigma_c]}\right]^2} \times \frac{\mathbb{E}_{eq}[M_t]}{i}$ where $$\psi_y = R/b = 3$$ , initially assumed. 7 Assume $$(z_1) = 20$$ ; Then $(z_2 = i \times z_1) = 2 \times 20 = 40$ Virtual number of teeth: $$z_{v1} = \frac{z_1}{\cos \delta_1} = \frac{20}{\cos 26.57^{\circ}} \approx 23 \text{ ; and}$$ $$z_{v2} = \frac{z_2}{\cos \delta_2} = \frac{40}{\cos 63.43^{\circ}} \approx 90$$ # 8 Calculation of transverse module (m): We know that, $$m_t = \frac{R}{0.5\sqrt{z_1^2 + z_2^2}} = \frac{51}{0.5\sqrt{20^2 + 40^2}} = 2.28 \text{ mm}$$ From Table 5.8, the nearest higher standard transverse module is 2.5 mm ## Revision of cone distance (R): We know that, $$R = 0.5 m_t \sqrt{z_1^2 + z_2^2} = 0.5 \times 2.5 \sqrt{20^2 + 40^2} = 55.9 \text{ mm}$$ ### 10. Calculation of b, may, d law y and \( \psi\_y \): Face width (b): $$b = \frac{R}{\Psi_y} = \frac{55.9}{3} = 18.63 \text{ mm}$$ ✓ Average module $$(m_{av})$$ : $m_{av} = m_1 - \frac{b \sin \delta_1}{z_1} = 2.5 - \frac{18.63 \times \sin 26.57^\circ}{20}$ Average pcd of pinion $$(d_{1av})$$ $d_{1av} = m_{av} \times z_1 = 2.083 \times 20 = 41.66 \text{ m}$ $$\checkmark \text{ Pitch line velocity } (v): \qquad v = \frac{\pi \times d_{1av} \times N_1}{60} = \frac{\pi \times 41.66 \times 10^{-3} \times 800}{60}$$ $$= 1.745 \text{ m/s}$$ $$\checkmark$$ To find $\psi_y$ : $\psi_y = \frac{b}{d_{1ay}} = \frac{18.63}{41.66} = 0.447$ ## 11 IS quality 6 bevel gear is assumed, from Table 5.22. ### 2 Revision of design torque [M,]: We know that $$[M_t] = M_t \times K \times K_d \otimes 15$$ where $$K = 1.1$$ , for $b/d_{1av} \le 1$ , from Table 7.2, and $k = 1.35$ , for IS quality 6 and $v$ upto 3 m/s, from Table 5.12. $k = 1.35$ , for IS quality 6 and $v$ upto 3 m/s, from Table 5.12. 13 Check for bending: We know that the induced bending stress $$8.19^{R} \qquad \delta_{b} = \frac{R \sqrt{i^{2} + 1} / [M_{t}]}{(R - 0.5 b)^{2} \times b \times m_{t} \times y_{v1}}$$ where $y_{vl} \approx 0.408$ , for $z_{vl} = 23$ , from Table 5.13 $$\overline{O}_b = \frac{55.9\sqrt{2^2 + 1} \times 33.24 \times 10^3}{(55.9 - 0.5 \times 18.63)^2 \times 18.63 \times 2.5 \times 0.408}$$ = 100.75 N/mm<sup>2</sup> We find $\sigma_b > [\sigma_b]$ . Thus the design is not satisfactory. Trial 2: Now we will try with increased transverse module 3 mm. Repeating from Ster again, we get $$R = 0.5 \times m_t \times \sqrt{z_1^2 + z_2^2} = 0.5 \times 3 \times \sqrt{20^2 + 40^2} = 67.08 \text{ m}$$ $$b = \frac{R}{\Psi_y} = \frac{67.08}{3} = 22.36 \text{ mm}$$ $$m_{av} = m_t - \frac{b \sin \delta_1}{z_1} = 3 - \frac{22.36 \times \sin 26.57^{\circ}}{20} = 2.5 \text{ mm}$$ $$d_{1av} = m_{av} \times z_1 = 2.5 \times 20 = 50 \text{ mm}$$ $$8.15 \qquad v = \frac{\pi \times d_{1av} \times N_1}{60} = \frac{\pi \times 50 \times 10^{-3} \times 800}{60} = 2.094 \text{ m/s}$$ $$\Psi_y = \frac{b}{d_{1av}} = \frac{22.36}{50} = 0.447$$ IS quality 6 bevel gear is assumed. $$(K) = 1.1, \text{ from Table 7.2}$$ $$(K_d) = 1.35, \text{ from Table 5.12}$$ $$[M_t] = M_t \times K \times K_d = 22.38 \times 1.1 \times 1.35$$ $$= 33.24 \text{ N-m}$$ $$(5) = \frac{67.08 \sqrt{2^2 + 1} \times 33.24 \times 10^3}{(67.08 - 0.5 \times 22.36)^2 \times 22.36 \times 3 \times 0.408} = 58.3 \text{ N/mm}^2$$ Now we find $\sigma_b < [\sigma_b]$ . Thus the design is satisfactory. Check for wear strength: We know that the induced contact stress, Check for wear strength: We know that the induced contact stress, $$\sigma_{c} = \frac{0.72}{(R - 0.5 b)} \left[ \frac{\sqrt{(i^{2} + 1)^{3}}}{i \times b} \times E_{eq} \left[ M_{I} \right]^{\frac{1}{2}} \right]^{\frac{1}{2}}$$ $$= \frac{0.72}{(67.08 - 0.5 \times 22.36)} \left[ \frac{\sqrt{(2^2 + 1)^3}}{2 \times 22.36} \times 1.4 \times 10^5 \times 33.24 \times 10^3 \right]^{\frac{1}{2}}$$ $$= 439.33 \text{ N/mm}^2$$ We find $\sigma_c < [\sigma_c]$ . Thus the design is satisfactory. #### (15) Calculation of basic dimensions of pinion and gear: Refer Table 7.1 Transverse module: $(m_i) = 3 \text{ mm}$ Number of teeth: $(z_1)=20$ ; and $(z_2)=40$ . $d_1 = m_t \times z_1 = 3 \times 20 = 60 \text{ mm}$ ; and Pitch circle diameter: $d_2 = m_t \times z_2 = 3 \times 40 = 120 \text{ mm}.$ (R) = 67.08 mmCone distance: Face width: (b) = 22.36 mm $\delta_1 = 26.57^{\circ}$ ; and $\delta_2 = 63.43^{\circ}$ Pitch angles: $d_{a1} = m_t (z_1 + 2\cos\delta_1) = 3(20 + 2\cos 26.57^\circ)$ Tip diameter: > = 65.37 mm; and $d_{a2} = m_t (z_2 + 2 \cos \delta_2) = 3 (40 + 2 \cos 63.43^\circ)$ $= 122.68 \, \text{mm}$ $f_0 = 1$ Height factor: (c) = 0.2Clearance: Addendum angle: $\tan \theta_{a1} = \tan \theta_{a2} = \frac{m_t \times f_0}{R} = \frac{3 \times 1}{67.08} = 0.0447$ $\theta_{a1} = \theta_{a2} = 2.56^{\circ}$ or Dedendum angle: $\tan \theta_{f1} = \tan \theta_{f2} = \frac{m_t (f_0 + c)}{R} = \frac{3 (1 + 0.2)}{67.08}$ 8.38 = 0.05366 $\theta_{f1} = \theta_{f2} = 3.07^{\circ}$ $\delta_{a1} = \delta_1 + \theta_{a1} = 26.57^{\circ} + 2.56^{\circ} = 29.13^{\circ}$ ; and $\delta_{a2} = \delta_2 + \theta_{a2} = 63.43^{\circ} + 2.56^{\circ} = 65.99^{\circ}$ Tip angle: 8.30 | Bevel | Gears 26.579 2.079 | |--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | pela | Root angle: $\delta_{f1} = \delta_1 - \theta_{f1} = 26.57^\circ - 3.07^\circ = 23.5^\circ; \text{ and}$ $\delta_{f1} = \delta_1 - \theta_{f1} = 63.43^\circ - 3.07^\circ = 60.36^\circ$ | | 8.39 | 0/2 - 02 - 0/2 | | 1.0 | Virtual number of teeth : $(\bar{z}_{\nu 1}) = 23$ ; and $(\bar{z}_{\nu 2}) = 90$ . | | | Design a straight bevel gear drive between two shafts at right | | The second second second | Smood of the minion shall is 300 1.p.m. the specific gear when | | | - m Dinion is of steel and wheel of cust | | | to 10 wages The drive transmits 7.37 km. | | | aday for 10 years. The drive it discounts and the latter it discounts are provided in the latter it discounts and the latter it discounts are provided in lat | | Tof | Design the bevel gear drive. | | | olution:) Since the materials of pinion and gear are different, we have to design | | pinion ) | first and check the gear. | | | Gear ratio: $(i) = \frac{N_1}{N_2} = \frac{360}{120} = 3$ | | | Pitch angles: $(\tan \delta_2 = i = 3)$ or $(\delta_2 = \tan^{-1}(3)) = 71.56^\circ$ | | | Then, $\delta_1 = 90^\circ - \delta_2 = 90^\circ - 71.56^\circ = 18.44^\circ$ | | 2 | Material selection: Pinion – C45 Steel, $\sigma_u = 700 \text{ N/mm}^2$ and $\sigma_y = 360 \text{ N/m}^2$ | | | $ \sqrt{.}^{\circ} \text{ Gear} - \text{CI grade 35}, \sigma_u = 350 \text{ N/mm}^2, \text{ from Table 5.3.} $ | | 3. | Gear life in hours = $(2 \text{ hours/day}) \times (365 \text{ days / year} \times 10 \text{ years}) = 7300 \text{ hours}$ | | - :. C | Gear life in cycles, $(N) = 7300 \times 360 \times 60 = 15.768 \times 10^7$ cycles | | 4.0 | Calculation of initial design torque [M]: | | We k | now that, $8 \% [M_t] = M_t \times K \times K_d$ | | where | $\widehat{\mathbf{M}_{l}} = \frac{60 \times P}{2 \pi N_{1}} = \frac{60 \times 9.37 \times 10^{3}}{2 \pi \times 360} = 248.6 \text{ N-m, and}$ | | | $(K \cdot K_d) = 1.3$ , initially assumed. | | 4 | $(M_1) = 248.6 \times 1.3 = 323.28 \text{ N-m}$ | | <u>(5)</u> ( | Calculation of Eg, [ ob] and [ oc] | | | Fo find $E_{eq}$ : $E_{eq} = 1.7 \times 10^5 \text{ N/mm}^2$ , from Table 5.20. | | × 1 | To find $[\sigma_{b1}]$ ; We know that the design bending stress for pinion, | | | $[\sigma_{b1}] = \frac{1.4 \text{ K}_{bl}}{n \cdot \text{K}_{c}} \times \sigma_{-1}$ , for rotation in one direction | | | |