| Bevel | Gears 26.579 2.079 | |--------------------------|---| | pela | Root angle: $\delta_{f1} = \delta_1 - \theta_{f1} = 26.57^\circ - 3.07^\circ = 23.5^\circ; \text{ and}$ $\delta_{f1} = \delta_1 - \theta_{f1} = 63.43^\circ - 3.07^\circ = 60.36^\circ$ | | 8.39 | 0/2 - 02 - 0/2 | | 1.0 | Virtual number of teeth : $(\bar{z}_{\nu 1}) = 23$; and $(\bar{z}_{\nu 2}) = 90$. | | | Design a straight bevel gear drive between two shafts at right | | The second second second | Smood of the minion shall is 300 1.p.m. the specific gear when | | | - m Dinion is of steel and wheel of cust | | | to 10 wages The drive transmits 7.37 km. | | | aday for 10 years. The drive it discounts and the latter it discounts are provided in the latter it discounts and the latter it discounts are provided in lat | | Tof | Design the bevel gear drive. | | | olution:) Since the materials of pinion and gear are different, we have to design | | pinion) | first and check the gear. | | | Gear ratio: $(i) = \frac{N_1}{N_2} = \frac{360}{120} = 3$ | | | Pitch angles: $(\tan \delta_2 = i = 3)$ or $(\delta_2 = \tan^{-1}(3)) = 71.56^\circ$ | | | Then, $\delta_1 = 90^\circ - \delta_2 = 90^\circ - 71.56^\circ = 18.44^\circ$ | | 2 | Material selection: Pinion – C45 Steel, $\sigma_u = 700 \text{ N/mm}^2$ and $\sigma_y = 360 \text{ N/m}^2$ | | | $ \sqrt{.}^{\circ} \text{ Gear} - \text{CI grade 35}, \sigma_u = 350 \text{ N/mm}^2, \text{ from Table 5.3.} $ | | 3. | Gear life in hours = $(2 \text{ hours/day}) \times (365 \text{ days / year} \times 10 \text{ years}) = 7300 \text{ hours}$ | | - :. C | Gear life in cycles, $(N) = 7300 \times 360 \times 60 = 15.768 \times 10^7$ cycles | | 4.0 | Calculation of initial design torque [M]: | | We k | now that, $8 \% [M_t] = M_t \times K \times K_d$ | | where | $\widehat{\mathbf{M}_{l}} = \frac{60 \times P}{2 \pi N_{1}} = \frac{60 \times 9.37 \times 10^{3}}{2 \pi \times 360} = 248.6 \text{ N-m, and}$ | | | $(K \cdot K_d) = 1.3$, initially assumed. | | 4 | $(M_1) = 248.6 \times 1.3 = 323.28 \text{ N-m}$ | | <u>(5)</u> (| Calculation of Eg, [ob] and [oc] | | | Fo find E_{eq} : $E_{eq} = 1.7 \times 10^5 \text{ N/mm}^2$, from Table 5.20. | | × 1 | To find $[\sigma_{b1}]$; We know that the design bending stress for pinion, | | | $[\sigma_{b1}] = \frac{1.4 \text{ K}_{bl}}{n \cdot \text{K}_{c}} \times \sigma_{-1}$, for rotation in one direction | | | | 8.19 $$(K_{bl}) = 1$$, for HB ≤ 350 and N $\geq 10^7$, from Table 5.14, 8.19 $$K_{\sigma} = 1.5$$, for steel pinion, from Table 5.15, 8.19 $$n = 2.5$$, steel hardened, from Table 5.17. $$S^{\circ} = 0.25 (\sigma_u + \sigma_y) + 50, \text{ for forged steel, from Table 5.16.}$$ $$= 0.25 (700 + 360) + 50 = 315 \text{ N/mm}^2$$ $$\boxed{(\sigma_{b1})} = \frac{1.4 \times 1}{2.5 \times 1.5} \times 315 = 117.6 \text{ N/mm}^2$$ \checkmark To find $[\sigma_{cl}]$: We know that the design contact stress for pinion, 8.16 $$[\sigma_{c1}] = C_R \cdot HRC \times K_{cl}$$ 8.16 $C_R = 23$, from Table 5.18, $$g = C_R = 23$$, from Table 5.18, 8. $$K_{cl} = 1$$, for steel pinion, HB ≤ 350 and N $\geq 10^7$, from Table 5.19. $[\sigma_{c1}]$ = 23 × 50 × 1 = 1150 N/mm² ## Calculation of cone distance (R): We know that, $$\mathbb{R} \ge \psi_y \sqrt{i^2 + 1} \sqrt[3]{\left[\frac{0.72}{(\psi_y - 0.5)[\sigma_c]}\right]^2 \times \frac{\mathbb{E}_{eq}[M_t]}{i}}$$ where $$8.15$$ $(\psi_y) = R/b = 3$, initially assumed. $$\begin{array}{ccc} R \ge 3\sqrt{3^2 + 1} & \sqrt[3]{\left[\frac{0.72}{(3 - 0.5)1150}\right]^2 \times \frac{1.7 \times 10^5 \times 323.28 \times 10^3}{3}} \\ \ge 99.36 \end{array}$$ or $$\mathbf{R} = 100 \, \mathrm{mm}$$. Assume $$z_1 = 20$$; Then $z_2 = i \times z_1 = 3 \times 20 = 60$ Virtual number of teeth: $$z_{v1} = \frac{z_1}{\cos \delta_1} = \frac{20}{\cos 18.44^{\circ}} \approx 22$$; and $$z_{v2} = \frac{z_2}{\cos \delta_2} = \frac{60}{\cos 71.56^{\circ}} \approx 190.$$ ## 8.) Calculation of transverse module (m,) We know that, $$m_t = \frac{R}{0.5\sqrt{z_1^2 + z_2^2}}$$ $$= \frac{100}{0.5\sqrt{20^2 + 60^2}} = 3.162 \text{ mm}$$ From Table 5.8, the nearest higher standard transverse module is 4 mm. 9. Revision of cone distance (R) We know that, $(R = 0.5 m_f \sqrt{z_1^2 + z_2^2}) = 0.5 \times 4 \sqrt{20^2 + 60^2} = 126.49 m_{\text{m}}$ (10) Calculation of b, may, d law v and Wy; Face width (b): $$b = \frac{R}{\Psi_y} = \frac{126.49}{3} = 42.16 \text{ mm}$$ Average module $$(m_{av})$$: $m_{av} = m_t - \frac{b \sin \delta_1}{z_1} = 4 - \frac{42.16 \times \sin 18.44^{\circ}}{20}$ Average pcd of pinion $$(d_{1av})$$: $d_{1av} = m_{av} \times z_1 = 3.333 \times 20 = 66.66 \, \text{mm}$ $$\checkmark$$ Pitch line velocity (ν): $v = \frac{\pi \times d_{1av} \times N_1}{60} = \frac{\pi \times 66.66 \times 10^{-3} \times 360}{60} = 1.256$ $$\sqrt{\psi_y = \frac{b}{d_{1av}}} = \frac{42.16}{66.66} = 0.632$$ [11] IS quality 6 bevel gear is assumed, from Table 5.22. 12.) Revision of design torque [M,]: We know that, $$[M_t] = M_t \times K \times K_d$$ where $$(K_d) = 1.1$$, from Table 7.2, and $(K_d) = 1.35$, from Table 5.12. $(M_t) = 248.6 \times 1.1 \times 1.35 = 369.28 \text{ N-m}$ Check for bending of pinion: We know that the induced bending stress, 8-13A $$\sigma_{b1} = \frac{R\sqrt{i^2 + 1} [M_t]}{(R + 0.5 b)^2 \times b \times m_t \times y_{vl}}$$ where $$Q_0$$ (8) $V_{\nu l} = 0.402$, for $Z_{\nu l} = 22$, from Table 5.13 $$\sigma_b = \frac{126.49 \sqrt{3^2 + 1} \times 369.28 \times 10^3}{(126.49 - 0.5 \times 42.16)^2 \times 42.16 \times 4 \times 0.402} = 196.09 \text{ N/mm}^2$$ $$d(\sigma_{b1} > [\sigma_{b1}]). \text{ Thus the design is } \sigma_{b1} = 196.09 \text{ N/mm}^2$$ We find $\sigma_{b1} > [\sigma_{b1}]$.) Thus the design is unsatisfactory. Trial 2: Now we will try with increased transverse module 5 mm. Repeating from Stop ain, we get again, we get $$R = 0.5 \times m_t \times \sqrt{z_1^2 + z_2^2} = 0.5 \times 5 \times \sqrt{20^2 + 60^2} = 158.11 \, \text{m/s}$$ $$b = \frac{R}{\Psi_{y}} = \frac{158.11}{3} = 52.7 \text{ mm}$$ $$m_{av} = m_{t} - \frac{b \sin \delta_{1}}{z_{1}} = 5 - \frac{52.7 \times \sin 18.44}{20} = 4.166 \text{ mm}$$ $$d_{1av} = m_{av} \times z_{1} = 4.166 \times 20 = 83.33 \text{ mm}$$ $$\nabla = \frac{\pi \times d_{1av} \times N_{1}}{60} = \frac{\pi \times 83.33 \times 10^{-3} \times 360}{60} = 1.57 \text{ m/s}$$ $$\Psi_{y} = \frac{b}{d_{1av}} = \frac{52.7}{83.33} = 0.632$$ IS quality 6 bevel gear is assumed. $$\begin{array}{lll} \hline K &= 1.1; & \hline M_d &= 1.35. \\ \hline M_t &= 248.6 \times 1.1 \times 1.35 = 369.28 \text{ N-m} \\ \hline \sigma_{b1} &= \frac{158.11 \sqrt{3^2 + 1} \times 369.28 \times 10^3}{(158.11 - 0.5 \times 52.7)^2 \times 52.7 \times 5 \times 0.402} = 100.4 \text{ N/mm}^2 \end{array}$$ Now we find $\sigma_{b1} < [\sigma_{b1}]$, thus the design is satisfactory. 14. Check for wearing of pinion: We know that the induced contact stress, $$\sigma_{c1} = \left(\frac{0.72}{R - 0.5 b}\right) \left[\frac{\sqrt{(i^2 + 1)^3}}{i b} \times E_{eq} \times [M_t]\right]^{\frac{1}{2}} \otimes_{\rho_{50}}^{13} \otimes_{\rho_{50}}^{13}$$ $$= \left[\frac{0.72}{158.11 - 0.5 \times 52.7}\right] \left[\frac{\sqrt{(3^2 + 1)^3}}{3 \times 52.7} \times 1.7 \times 10^5 \times 369.28 \times 10^3\right]^{\frac{1}{2}}$$ $$= 612.33 \text{ N/mm}^2$$ We find $\sigma_{c1} < [\sigma_{c1}]$. Thus the design is satisfactory for pinion. 15. Check for gear (i.e., wheel): Gear material: CI grade 30. First we have to calculate $[\sigma_{b2}]$ and $[\sigma_{c2}]$. Gear life of wheel, $$N = \frac{N_{\text{pinion}}}{3} = \frac{15.768 \times 10^7}{3} = 5.256 \times 10^7 \text{ cycles}$$ To find $[\sigma_{b2}]$: We know that the design bending stress for gear, where $$K_{bl} = \sqrt[9]{\frac{10^7}{N}} = \sqrt[9]{\frac{107}{5.256 \times 10^7}} = 0.832$$, from Table 5.14, $\sqrt[8]{9}$ $\sqrt[8]{$ 8 9 $$n = 2$$, from Table 5.17. $\sigma_{-1} = 0.45 \, \sigma_{u} = 0.45 \times 350 = 157.5 \, \text{N/mm}^2$ Gears $$\frac{1.4 \times 0.832}{2 \times 1.2} \times 157.5 = 76.44 \text{ N/mm}^2$$ $$\frac{1.4 \times 0.832}{2 \times 1.2} \times 157.5 = 76.44 \text{ N/mm}^2$$ To find oc2 1: We know that the design contact stress for gear, $$C_{B} = C_{B} \times HB \times K_{cl}$$ $$C_{B} = 2.3, \text{ from Table 5.18,}$$ $$C_{B} = 200 \text{ to 260, from Table}$$ where $$3.16$$ $C_B = 2.3$, from Table 3.10, 3.16 $HB = 200$ to 260, from Table 5.18, and $$(K_{cl} = \sqrt[6]{\frac{10^7}{N}} = \sqrt[6]{\frac{10^7}{5.256 \times 10^7}} = 0.758$$ $$[\sigma_{c2}] = 2.3 \times 260 \times 0.758 = 453.284 \text{ N/mm}^2$$ Check for bending of gear: The induced bending stress for gear can be calculated using the relation where $$\sigma_{b1} \times y_{\nu 1} = \sigma_{b2} \times y_{\nu 2}$$ = 0.402, for $z_{\nu 1} = 22$, from Table 5.13, and $z_{\nu 2} = 0.520$, for $z_{\nu 2} = 190$, from Table 5.13. $$100.4 \times 0.402 = \sigma_{b2} \times 0.520$$ $$\sigma_{b2} = 77.6 \text{ N/mm}^2$$ We find σ_{b2} is almost equal to $[\sigma_{b2}]$. Thus the design is okay and it can be accepted (b) Check for wearing of gear: Since the contact area is same, $$\sigma_{c2} = \sigma_{c1} = 612.33 \text{ N/mm}^2$$ We find $\sigma_{c2} > [\sigma_{c2}]$. It means the gear does not have adequate beam strength. In order to increase the wear strength of the gear, surface hardness may be raised to 360 BHN. The we get $$[\sigma_{b2}]$$ = 2.3 × 360 × 0.758 = 627.62 N/mm². Now we find $\sigma_{b2} < [\sigma_{b2}]$, thus the design is safe and satisfactory.