Bevel	Gears 26.579 2.079
pela	Root angle: $\delta_{f1} = \delta_1 - \theta_{f1} = 26.57^\circ - 3.07^\circ = 23.5^\circ; \text{ and}$ $\delta_{f1} = \delta_1 - \theta_{f1} = 63.43^\circ - 3.07^\circ = 60.36^\circ$
8.39	0/2 - 02 - 0/2
1.0	Virtual number of teeth : $(\bar{z}_{\nu 1}) = 23$; and $(\bar{z}_{\nu 2}) = 90$.
	Design a straight bevel gear drive between two shafts at right
The second second second	Smood of the minion shall is 300 1.p.m. the specific gear when
	- m Dinion is of steel and wheel of cust
	to 10 wages The drive transmits 7.37 km.
	aday for 10 years. The drive it discounts and the latter it discounts are provided in the latter it discounts and the latter it discounts are provided in the latter in the lat
Tof	Design the bevel gear drive.
	olution:) Since the materials of pinion and gear are different, we have to design
pinion)	first and check the gear.
	Gear ratio: $(i) = \frac{N_1}{N_2} = \frac{360}{120} = 3$
	Pitch angles: $(\tan \delta_2 = i = 3)$ or $(\delta_2 = \tan^{-1}(3)) = 71.56^\circ$
	Then, $\delta_1 = 90^\circ - \delta_2 = 90^\circ - 71.56^\circ = 18.44^\circ$
2	Material selection: Pinion – C45 Steel, $\sigma_u = 700 \text{ N/mm}^2$ and $\sigma_y = 360 \text{ N/m}^2$
	$ \sqrt{.}^{\circ} \text{ Gear} - \text{CI grade 35}, \sigma_u = 350 \text{ N/mm}^2, \text{ from Table 5.3.} $
3.	Gear life in hours = $(2 \text{ hours/day}) \times (365 \text{ days / year} \times 10 \text{ years}) = 7300 \text{ hours}$
- :. C	Gear life in cycles, $(N) = 7300 \times 360 \times 60 = 15.768 \times 10^7$ cycles
4.0	Calculation of initial design torque [M]:
We k	now that, $8 \% [M_t] = M_t \times K \times K_d$
where	$\widehat{\mathbf{M}_{l}} = \frac{60 \times P}{2 \pi N_{1}} = \frac{60 \times 9.37 \times 10^{3}}{2 \pi \times 360} = 248.6 \text{ N-m, and}$
	$(K \cdot K_d) = 1.3$, initially assumed.
4	$(M_1) = 248.6 \times 1.3 = 323.28 \text{ N-m}$
<u>(5)</u> (Calculation of Eg, [ob] and [oc]
	Fo find E_{eq} : $E_{eq} = 1.7 \times 10^5 \text{ N/mm}^2$, from Table 5.20.
× 1	To find $[\sigma_{b1}]$; We know that the design bending stress for pinion,
	$[\sigma_{b1}] = \frac{1.4 \text{ K}_{bl}}{n \cdot \text{K}_{c}} \times \sigma_{-1}$, for rotation in one direction

8.19
$$(K_{bl}) = 1$$
, for HB ≤ 350 and N $\geq 10^7$, from Table 5.14,

8.19
$$K_{\sigma} = 1.5$$
, for steel pinion, from Table 5.15,

8.19
$$n = 2.5$$
, steel hardened, from Table 5.17.

$$S^{\circ} = 0.25 (\sigma_u + \sigma_y) + 50, \text{ for forged steel, from Table 5.16.}$$

$$= 0.25 (700 + 360) + 50 = 315 \text{ N/mm}^2$$

$$\boxed{(\sigma_{b1})} = \frac{1.4 \times 1}{2.5 \times 1.5} \times 315 = 117.6 \text{ N/mm}^2$$

 \checkmark To find $[\sigma_{cl}]$: We know that the design contact stress for pinion,

8.16
$$[\sigma_{c1}] = C_R \cdot HRC \times K_{cl}$$

8.16 $C_R = 23$, from Table 5.18,

$$g = C_R = 23$$
, from Table 5.18,

8.
$$K_{cl} = 1$$
, for steel pinion, HB ≤ 350 and N $\geq 10^7$, from Table 5.19.

 $[\sigma_{c1}]$ = 23 × 50 × 1 = 1150 N/mm²

Calculation of cone distance (R):

We know that,
$$\mathbb{R} \ge \psi_y \sqrt{i^2 + 1} \sqrt[3]{\left[\frac{0.72}{(\psi_y - 0.5)[\sigma_c]}\right]^2 \times \frac{\mathbb{E}_{eq}[M_t]}{i}}$$

where

$$8.15$$
 $(\psi_y) = R/b = 3$, initially assumed.

$$\begin{array}{ccc}
R \ge 3\sqrt{3^2 + 1} & \sqrt[3]{\left[\frac{0.72}{(3 - 0.5)1150}\right]^2 \times \frac{1.7 \times 10^5 \times 323.28 \times 10^3}{3}} \\
\ge 99.36
\end{array}$$

or

$$\mathbf{R} = 100 \, \mathrm{mm}$$
.

Assume
$$z_1 = 20$$
; Then $z_2 = i \times z_1 = 3 \times 20 = 60$

Virtual number of teeth:

$$z_{v1} = \frac{z_1}{\cos \delta_1} = \frac{20}{\cos 18.44^{\circ}} \approx 22$$
; and

$$z_{v2} = \frac{z_2}{\cos \delta_2} = \frac{60}{\cos 71.56^{\circ}} \approx 190.$$

8.) Calculation of transverse module (m,)

We know that,

$$m_t = \frac{R}{0.5\sqrt{z_1^2 + z_2^2}}$$

$$= \frac{100}{0.5\sqrt{20^2 + 60^2}} = 3.162 \text{ mm}$$

From Table 5.8, the nearest higher standard transverse module is 4 mm.

9. Revision of cone distance (R) We know that, $(R = 0.5 m_f \sqrt{z_1^2 + z_2^2}) = 0.5 \times 4 \sqrt{20^2 + 60^2} = 126.49 m_{\text{m}}$

(10) Calculation of b, may, d law v and Wy;

Face width (b):
$$b = \frac{R}{\Psi_y} = \frac{126.49}{3} = 42.16 \text{ mm}$$

Average module
$$(m_{av})$$
: $m_{av} = m_t - \frac{b \sin \delta_1}{z_1} = 4 - \frac{42.16 \times \sin 18.44^{\circ}}{20}$

Average pcd of pinion
$$(d_{1av})$$
: $d_{1av} = m_{av} \times z_1 = 3.333 \times 20 = 66.66 \, \text{mm}$

$$\checkmark$$
 Pitch line velocity (ν): $v = \frac{\pi \times d_{1av} \times N_1}{60} = \frac{\pi \times 66.66 \times 10^{-3} \times 360}{60} = 1.256$

$$\sqrt{\psi_y = \frac{b}{d_{1av}}} = \frac{42.16}{66.66} = 0.632$$

[11] IS quality 6 bevel gear is assumed, from Table 5.22.

12.) Revision of design torque [M,]:

We know that,
$$[M_t] = M_t \times K \times K_d$$

where

$$(K_d) = 1.1$$
, from Table 7.2, and $(K_d) = 1.35$, from Table 5.12.
 $(M_t) = 248.6 \times 1.1 \times 1.35 = 369.28 \text{ N-m}$

Check for bending of pinion: We know that the induced bending stress,

8-13A
$$\sigma_{b1} = \frac{R\sqrt{i^2 + 1} [M_t]}{(R + 0.5 b)^2 \times b \times m_t \times y_{vl}}$$

where

$$Q_0$$
 (8) $V_{\nu l} = 0.402$, for $Z_{\nu l} = 22$, from Table 5.13

$$\sigma_b = \frac{126.49 \sqrt{3^2 + 1} \times 369.28 \times 10^3}{(126.49 - 0.5 \times 42.16)^2 \times 42.16 \times 4 \times 0.402} = 196.09 \text{ N/mm}^2$$

$$d(\sigma_{b1} > [\sigma_{b1}]). \text{ Thus the design is } \sigma_{b1} = 196.09 \text{ N/mm}^2$$

We find $\sigma_{b1} > [\sigma_{b1}]$.) Thus the design is unsatisfactory.

Trial 2: Now we will try with increased transverse module 5 mm. Repeating from Stop ain, we get again, we get

$$R = 0.5 \times m_t \times \sqrt{z_1^2 + z_2^2} = 0.5 \times 5 \times \sqrt{20^2 + 60^2} = 158.11 \, \text{m/s}$$

$$b = \frac{R}{\Psi_{y}} = \frac{158.11}{3} = 52.7 \text{ mm}$$

$$m_{av} = m_{t} - \frac{b \sin \delta_{1}}{z_{1}} = 5 - \frac{52.7 \times \sin 18.44}{20} = 4.166 \text{ mm}$$

$$d_{1av} = m_{av} \times z_{1} = 4.166 \times 20 = 83.33 \text{ mm}$$

$$\nabla = \frac{\pi \times d_{1av} \times N_{1}}{60} = \frac{\pi \times 83.33 \times 10^{-3} \times 360}{60} = 1.57 \text{ m/s}$$

$$\Psi_{y} = \frac{b}{d_{1av}} = \frac{52.7}{83.33} = 0.632$$

IS quality 6 bevel gear is assumed.

$$\begin{array}{lll}
\hline
K &= 1.1; & \hline
M_d &= 1.35. \\
\hline
M_t &= 248.6 \times 1.1 \times 1.35 = 369.28 \text{ N-m} \\
\hline
\sigma_{b1} &= \frac{158.11 \sqrt{3^2 + 1} \times 369.28 \times 10^3}{(158.11 - 0.5 \times 52.7)^2 \times 52.7 \times 5 \times 0.402} = 100.4 \text{ N/mm}^2
\end{array}$$

Now we find $\sigma_{b1} < [\sigma_{b1}]$, thus the design is satisfactory.

14. Check for wearing of pinion: We know that the induced contact stress,

$$\sigma_{c1} = \left(\frac{0.72}{R - 0.5 b}\right) \left[\frac{\sqrt{(i^2 + 1)^3}}{i b} \times E_{eq} \times [M_t]\right]^{\frac{1}{2}} \otimes_{\rho_{50}}^{13} \otimes_{\rho_{50}}^{13}$$

$$= \left[\frac{0.72}{158.11 - 0.5 \times 52.7}\right] \left[\frac{\sqrt{(3^2 + 1)^3}}{3 \times 52.7} \times 1.7 \times 10^5 \times 369.28 \times 10^3\right]^{\frac{1}{2}}$$

$$= 612.33 \text{ N/mm}^2$$

We find $\sigma_{c1} < [\sigma_{c1}]$. Thus the design is satisfactory for pinion.

15. Check for gear (i.e., wheel): Gear material: CI grade 30.

First we have to calculate $[\sigma_{b2}]$ and $[\sigma_{c2}]$.

Gear life of wheel,
$$N = \frac{N_{\text{pinion}}}{3} = \frac{15.768 \times 10^7}{3} = 5.256 \times 10^7 \text{ cycles}$$

To find $[\sigma_{b2}]$: We know that the design bending stress for gear,

where
$$K_{bl} = \sqrt[9]{\frac{10^7}{N}} = \sqrt[9]{\frac{107}{5.256 \times 10^7}} = 0.832$$
, from Table 5.14, $\sqrt[8]{9}$ $\sqrt[8]{$

8 9
$$n = 2$$
, from Table 5.17.
 $\sigma_{-1} = 0.45 \, \sigma_{u} = 0.45 \times 350 = 157.5 \, \text{N/mm}^2$

Gears
$$\frac{1.4 \times 0.832}{2 \times 1.2} \times 157.5 = 76.44 \text{ N/mm}^2$$

$$\frac{1.4 \times 0.832}{2 \times 1.2} \times 157.5 = 76.44 \text{ N/mm}^2$$

To find oc2 1: We know that the design contact stress for gear,

$$C_{B} = C_{B} \times HB \times K_{cl}$$

$$C_{B} = 2.3, \text{ from Table 5.18,}$$

$$C_{B} = 200 \text{ to 260, from Table}$$

where

$$3.16$$
 $C_B = 2.3$, from Table 3.10,
 3.16 $HB = 200$ to 260, from Table 5.18, and

$$(K_{cl} = \sqrt[6]{\frac{10^7}{N}} = \sqrt[6]{\frac{10^7}{5.256 \times 10^7}} = 0.758$$

$$[\sigma_{c2}] = 2.3 \times 260 \times 0.758 = 453.284 \text{ N/mm}^2$$

Check for bending of gear: The induced bending stress for gear can be calculated using the relation

where
$$\sigma_{b1} \times y_{\nu 1} = \sigma_{b2} \times y_{\nu 2}$$
 = 0.402, for $z_{\nu 1} = 22$, from Table 5.13, and $z_{\nu 2} = 0.520$, for $z_{\nu 2} = 190$, from Table 5.13.

$$100.4 \times 0.402 = \sigma_{b2} \times 0.520$$

$$\sigma_{b2} = 77.6 \text{ N/mm}^2$$

We find σ_{b2} is almost equal to $[\sigma_{b2}]$. Thus the design is okay and it can be accepted

(b) Check for wearing of gear: Since the contact area is same,

$$\sigma_{c2} = \sigma_{c1} = 612.33 \text{ N/mm}^2$$

We find $\sigma_{c2} > [\sigma_{c2}]$. It means the gear does not have adequate beam strength. In order to increase the wear strength of the gear, surface hardness may be raised to 360 BHN. The we get

$$[\sigma_{b2}]$$
 = 2.3 × 360 × 0.758 = 627.62 N/mm².

Now we find $\sigma_{b2} < [\sigma_{b2}]$, thus the design is safe and satisfactory.