DIFFERENTIATOR

One of the simplest of the op-amp circuits that contain capacitor is
the differentiating amplifier, or differentiator. As the name suggests,
the circuit performs the mathematical operation of differentiation,
that is, the output waveform is the derivative of input waveform. A
differentiator circuit is shown in Fig. 4.21 (a).

Analysis

The node N is at virtual ground potential i.e., vy = 0. The current i,
through the capacitor is,
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The current i; through the feedback resistor is v /R, and there is no
current into the op-amp. Therefore, the nodal equation at node N is,
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from which we have
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Fig. 4.21 (a) Op-amp differentiator

Thus the output voltage v, is a constant (— R;C,) times the derivative
of the input voltage v; and the circuit is a differentiator. The minus
sign indicates a 180° phase shift of the output waveform v, with
respect to the input signal.

The phasor equivalent of Eq. (4.69) is, V, (s) = = R; C, s Vi(s) where V,
and V; is the phasor representation of v, and v,. In steady state, put
8 = jw. We may now write the magnitude of gain A of the
differentiator as,



|A] = =|- jo ReCy| =0 ReC, (4.70)
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* From Eq. (4.70), one can draw the frequency response of the op-
amp differentiator. Equation (4.70) may be rewritten as
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Atf=f, |A]l=1,1e,0 dB, and the gain increases at a rate of +20
dB/decade. Thus at high frequency, a differentiator may become un-
stable and break into oscillation. There is one more problem in the

differentiator of Fig. 4.21 (a). The input impedance (i.e., /()
decreases with increase in frequency, thereby making the circuit sen-
sitive to high frequency noise.

Practical Differentiator

A practical differentiator of the type shown in Fig. 4.21 (b) eliminates
the problem of stability and high frequency noise.
The transfer function for the circuit in Fig. 4.21 (b) is given by,
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Fig. 4.21 (b} Practical differentiator



For R;C; = R,C,, we get
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where h=EG (4.74)

From Eq. (4.73) it is evident that the gain increases at +20 dB/
decade for frequency f < f;, and decreases at —20 dB/decade for f > f,
as shown by dashed lines in Fig. 4.21 (c). This 40 dB/decade change
in gain is caused by R, C, and R; C; factors. For the basic differentiator
of Fig. 4.21 (a) the frequency response would have increased continu-
ously at the rate of +20 dB/decade even beyond f, causing stability
problem at high frequency. Thus the gain at high frequency is reduced
significantly, thereby avoiding the high frequency noise and stability
problems. The value of f, should be selected such that,
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where f, is the unity gain-bandwidth of the op-amp in open-loop
configuration.

4
o0 Open loop response
400 Responsa of basic
differatiator : 20 dB/decade
E.- 20} Response of
£ practical differentiator
o f -20 dB/decade
fl. -
O —— ——— : ~m
f/ I
f"/ e |
-
—20 ] 1 . | L =
f 100 1075 10% 10% 1, 10%

—#= Relative frequency (Hz)
Fig. 4.21 {C) Frequency response

For good differentiation, one must ensure that the time period 7T of
the input signal is larger than or equal to R C,, that is,

T > R, C, . (4.75)



It may be noted that for R;C, much greater than R, C, or R;C, Eq.
(4.72) is reduced to, V,/V; = - sR; C,, that is, the expression of the output
voltage remains the same as in the case of an ideal differentiator as

vy = -R(C, (4.76)

A resistance R, (= R, || R;) is normally connected to the (+) input
terminal to compensate for the input bias circuit.

A good differentiator may be designed as per the following steps:
1. Choose f, equal to the highest frequency of the input signal.

Assume a practical value of C, (< 1uF) and then calculate R;.
2. Choose f, = 10 f, (say). Now calculate the values of R, and C; so

that R,C, = RC,



PROBLEM

(a) Design an op-amp differentiator that will differentiate an input
signal with £, = 100 Hz. '

(b) Draw the output waveform for a sine wave of 1V peak at 100 Hz
applied to the differentiator.

(c) Repeat part (b) for a square wave input.

Solution
1
lect = = 100 Hz = f: Eq. (4.71
(a) select, f, = fiu z 5% R,C, [from Eq. (4.71)]
Let C‘l = 0.1 ]J.F,
1
R, = =15.9 k2
then F or(10%) (1077)
Now choose f, = 10f,
=1 kHz
= 1 [from Eq. (4.74)]
2nR,C,
1
fi e =1, 4
Therefore, R, 2 (10%) (10°7) 59 kQ

3 =T
0. = 159x10%x10

we get,
. 15.9 % 103

=0.01 pF



(b) v; = 1 sin 2n(100)¢
From Eq. (4.69),
dl.-'i

v = ~R Gy —2

= (15.9 kQ) (0.1uF) %[(1 V) sin (21) (10%) ¢]

=—(15.9 kQ) (0.1 uF) (2n) (10%) cos [(2r) (10%)¢]
=~ 0.999 cos [2n (10%)¢]
=—1 cos [(2r) (10%) ¢]

The input and output waveforms are shown in Fig. 4.22 (a).

(¢} For a square wave input, say 1V peak and 1 KHz, the cutput
waveform will consist of positive and negative spikes of magnitude
Vi which is approximately 13V for + 15V op-amp power supply.

During the time periods for which input is constant at + 1V, the
differentiated output will be zero. However, when input transits
between = 1V levels, the slope of the input is infinite for an ideal
square wave. The output, therefore, gets clipped to about + 13V
for a £ 15V op-amp power supply as shown in Fig. 4.22 (b).
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Fig. 4.22 (a) Sine-wave input and cosine output (b) Square wave input
and spike output



