INTEGRATOR

If we interchange the resistor and capacitor of the differentiator of
Fig. 4.21 {(a), we have the circuit of Fig. 4.23 (a) which as we will see,
is an integrator. The nodal equation at node N is,
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or,

Fig. 4.23 (a) Op-amp integrator

Integrating both sides, we get,
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Practical Integrator Circuit (Lossy Integrator)

The gain of an integrator at low frequency (dc) can be limited to avoid
the saturation problem if the feedback capacitor is shunted by a
resistance R; as shown in Fig. 4.23 (¢). The parallel combination of R;
and C; behaves like a practical capacitor which dissipates power unlike
an ideal capacitor. For this reason, this circuit is also called a lossy
integrator. The resistor R; limits the low frequency gain to - R{/R,
(generally R; = 10 R,) and thus provides dc stabilization.

Analysis

The nodal equation at the inverting input terminal of the op-amp of
Fig. 4.23 (c) 1s,
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from which we have,
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If Ry is large, the lossy integrator approximates the ideal integrator.
For s = jw, magnitude of the gain of lossy integrator is given by
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Fig. 4.23 (¢} Practical or lossy integrator circuit

The Bode plot of the lossy integrator is also shown in Fig. 4.23 (b).
At low frequencies gain is constant at R/R,. The break frequency
(f = f,} at which the gain is 0.707 (E{/R ) (or — 3dB below its value of
R:/R,) is calculated from Eq. (4.84) as
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Solving for f = f,, we get

1
fa 2n R, C,

This is a very important frequency. It tells us where the useful
integration range starts. If the input frequency is lower than f, the
circuit acts like a simple inverting amplifier and no integration results.
At input frequency equal to f,, 50% accuracy results. The practical
thumb rule is that if the input frequency is 10 times f,, than 99%
accuracy can result.



