
VIRTUALIZATION 

A virtualization layer is added between the hardware and operating system. This 

virtualization layer allows multiple operating system instances to run concurrently 

within virtual machines on a single computer, dynamically partitioning and sharing the 

available physical resources such as CPU, storage, memory and I/O devices. 

Virtualization approaches use either a hosted (type 2) or a hypervisor (type 1) 

architecture. 

A hosted architecture installs and runs the virtualization layer as an application on top 

of an operating system and supports the broadest range of hardware configurations. 

In contrast, a hypervisor (bare-metal) architecture installs the virtualization layer 

directly on top of bare metal machine. Since it has direct access to the hardware 

resources rather than going through an operating system, a hypervisor is more efficient 

than a hosted architecture and delivers greater scalability, robustness and performance. 

The functionality of the hypervisor varies greatly based on architecture and 

implementation. Each Virtual Machine Manager (VMM) running on the hypervisor 

implements the virtual machine hardware abstraction and is responsible for running a 

guest OS. Each VMM has to partition and share the CPU, memory and I/O devices to 

successfully virtualize the system. 

1. CPU Virtualization 

The Challenges of x86 Hardware Virtualization 

Operating systems are designed to run directly on the bare-metal hardware, so they 

naturally assume they fully ‘own’ the computer hardware. 



The architecture offers four levels of privilege known as Protection Ring 0, 1, 2 and 3 

to operating systems and applications to manage access to the computer hardware. 

While user level applications typically run in Ring 3, the operating system needs to 

have direct access to the memory and hardware and must execute its privileged 

instructions in Ring 0. 

Virtualizing the architecture requires placing a virtualization layer under the operating 

system (which expects to be in the most privileged Ring 0) to create and manage the 

virtual machines that deliver shared resources. 

Further complicating the situation, some sensitive instructions can’t effectively be 

virtualized as they have different semantics when they are not executed in Ring 0. The 

difficulty in trapping and translating these sensitive and privileged instruction requests 

at runtime was the challenge. 

The challenge got resolved by developing binary translation techniques that allow the 

VMM to run in Ring 0 for isolation and performance, while moving the operating 

system to a user level ring with greater privilege than applications in Ring 3 but less 

privilege than the virtual machine monitor in Ring 0Three alternative techniques now 

exist for handling sensitive and privileged instructions to virtualize the CPU on the 

architecture: 

1. Full virtualization using binary translation 

2. OS assisted virtualization or paravirtualization 

3. Hardware assisted virtualization (first generation) 

Technique 1 — Full Virtualization using Binary Translation 

 

 

 



 

We can virtualize any operating system using a combination of binary translation and 

direct execution techniques. This approach translates kernel code to replace non 

virtualizable instructions with new sequences of instructions that have the intended 

effect on the virtual hardware. Meanwhile, user level code is directly executed on the 

processor for high performance virtualization. 

Each virtual machine monitor (VMM) provides each Virtual Machine with all the 

services of the physical system, including a virtual BIOS, virtual devices and 

virtualized memory management. This combination of binary translation and direct 

execution provides Full Virtualization as the guest OS is fully abstracted (completely 

decoupled) from the underlying hardware by the virtualization layer. 

The guest OS is not aware it is being virtualized and requires no modification. Full 

virtualization is the only option that requires no hardware assist or operating system 

assist to virtualize sensitive and privileged instructions. The hypervisor translates all 

operating system instructions on the fly and caches the results for future use, while 

user level instructions run unmodified at native speed.Full virtualization offers the best 

isolation and security for virtual machines, and simplifies migration and portability as 

the same guest OS instance can run virtualized or on native hardware. 

 

Technique 2 — OS Assisted Virtualization or Paravirtualization 



 

 

 

Paravirtualization refers to communication between the guest OS and the hypervisor to 

improve performance and efficiency. Paravirtualization involves modifying the OS 

kernel to replace nonvirtualizable instructions with hypercalls that communicate 

directly with the virtualization layer hypervisor. 

The hypervisor also provides hypercall interfaces for other critical kernel operations 

such as memory management, interrupt handling and time keeping. Paravirtualization 

is different from full virtualization, where the unmodified OS does not know it is 

virtualized and sensitive OS calls are trapped using binary translation. 

The performance advantage of paravirtualization over full virtualization can vary 

greatly depending on the workload. As paravirtualization cannot support unmodified 

operating systems, its compatibility and portability is poor. Paravirtualization can also 

introduce significant support and maintainability issues in production environments as 

it requires deep OS kernel modifications. 



The open source Xen project is an example of paravirtualization that virtualizes the 

processor and memory using a modified Linux kernel and virtualizes the I/O using 

custom guest OS device drivers. While it is very difficult to build the more 

sophisticated binary translation support necessary for full virtualization, modifying the 

guest OS to enable paravirtualization is relatively easy. There are minimal, non-

intrusive changes installed into the guest OS that do not require OS kernel 

modification. 

Technique 3 — Hardware Assisted Virtualization 

 

Hardware vendors are rapidly embracing virtualization and developing new features to 

simplify virtualization techniques. First generation enhancements include Intel 

Virtualization Technology (VT-x) and AMD’s AMD-V which both target privileged 

instructions with a new CPU execution mode feature that allows the VMM to run in a 

new root mode below ring 0. Privileged and sensitive calls are set to automatically trap 

to the hypervisor, removing the need for either binary translation or paravirtualization. 

The guest state is stored in Virtual Machine Control Structures (VT-x) or Virtual 

Machine Control Blocks (AMD-V). 



2. Memory Virtualization 

 

Beyond CPU virtualization, the next critical component is memory virtualization. This 

involves sharing the physical system memory and dynamically allocating it to virtual 

machines. Virtual machine memory virtualization is very similar to the virtual memory 

support provided by modern operating systems. Applications see a contiguous address 

space that is not necessarily tied to the underlying physical memory in the system. The 

operating system keeps mappings of virtual page 

numbers to physical page numbers stored in page tables. All modern CPUs include a 

memory management unit (MMU) and a translation lookaside buffer (TLB) to 

optimize virtual memory performance. 

To run multiple virtual machines on a single system, another level of memory 

virtualization is required. In other words, one has to virtualize the MMU to support the 

guest OS. The guest OS continues to control the mapping of virtual addresses to the 

guest memory physical addresses, but the guest OS cannot have direct access to the 

actual machine memory. The VMM is responsible for mapping guest physical memory 

to the actual machine memory, and it uses shadow page tables to accelerate the 

mappings. 

The VMM uses TLB hardware to map the virtual memory directly to the machine 

memory to avoid the two levels of translation on every access. When the guest OS 

changes the virtual memory to physical memory mapping, the VMM updates the 

shadow page tables to enable a direct lookup. MMU virtualization creates some 

overhead for all virtualization approaches, but this is the area where second generation 

hardware assisted virtualization will offer efficiency gains 



3. Device and I/O Virtualization 

The final component required beyond CPU and memory virtualization is device and 

I/O virtualization. This involves managing routing I/O requests between virtual devices 

and the shared physical hardware. 

Software based I/O virtualization and management, in contrast to a direct pass-through 

to the hardware, enables a rich set of features and simplified management. With 

networking for example, virtual NICs and switches create virtual networks between 

virtual machines without the network traffic consuming bandwidth on the physical 

network, NIC teaming allows multiple physical NICS to appear as one and failover 

transparently for virtual machines, and virtual machines can be seamlessly relocated to 

different systems while keeping their existing MAC addresses. The key to effective I/O 

virtualization is to preserve these virtualization benefits while keeping the added CPU 

utilization to a minimum 

 


	1. CPU Virtualization
	The Challenges of x86 Hardware Virtualization
	Technique 1 — Full Virtualization using Binary Translation
	Technique 2 — OS Assisted Virtualization or Paravirtualization
	Technique 3 — Hardware Assisted Virtualization
	2. Memory Virtualization
	3. Device and I/O Virtualization

