
DOCKER /CONTAINER

Docker is an open-source containerization platform by which you can pack your

application and all its dependencies into a standardized unit called a container.

Containers are light in weight, which makes them portable, and they are isolated

from the underlying infrastructure and from each other’s container. You can run the

docker image as a docker container in any machine where docker is installed

without depending on the operating system.

There are two big pieces to Docker: The Docker Engine, which is the Docker

binary that’s running on your local machine and servers and does the work to run

your software. The Docker Hub is a website and cloud service that makes it easy

for everyone to share their docker images.

Docker is Popular

Docker gained its popularity due to its impact on the software development and

deployment. The following are the some of the main reasons for docker becoming

popular:

1. Portability: Docker facilitates the developers in packaging their applications

with all dependencies into a single lightweight containers. It facilities in ensuring

the consistent performance across the different computing environments.

2. Reproducibility: Encapsulating the applications with their dependencies within

a container it ensures in software setups remaining consistent across the

development, testing and production environments.

3. Efficiency: Docker, through its container-based architecture it optimizes the

resource utilization. It allows the developers to run the multiple isolated

applications on a single host system.

4. Scalability: Docker’s scalability features facilitated the developers in making

easier of their applications handling at time of workloads increment.

Understanding Docker’s core concepts is essential, but practical

experience is what truly sets you apart. Platforms like Hostinger

make it easy to deploy Docker containers, allowing you to focus on

developing and testing your applications. Hostinger’s scalable

infrastructure provides an ideal environment for learning and

http://www.hostinger.in/
http://www.hostinger.in/

experimenting with Docker in a real-world setting. Their seamless

integration with Docker containers ensures that whether you’re

running simple apps or complex multi-container setups, you can

deploy with ease.

Key Components of Docker

The following are the some of the key components of Docker:

 Docker Engine: Docker Engine is a core part of docker, that handles the creation

and management of containers.

 Docker Image: Docker Image is a read-only template that is used for creating

containers, containing the application code and dependencies.

 Docker Hub: It is a cloud based repository that is used for finding and sharing

the container images.

 Dockerfile: It is a file that describes the steps to create an image quickly.

 Docker Registry : It is a storage distribution system for docker images, where

you can store the images in both public and private modes.

Dockerfile

The Dockerfile uses DSL (Domain Specific Language) and contains instructions for

generating a Docker image. Dockerfile will define the processes to quickly produce

an image. While creating your application, you should create a Dockerfile in order

since the Docker daemon runs all of the instructions from top to bottom.

The Dockerfile is the source code of the image.

(The Docker daemon, often referred to simply as “Docker,” is a background service

that manages Docker containers on a system.)

 It is a text document that contains necessary commands which on execution help

assemble a Docker Image.

 Docker image is created using a Dockerfile.

Docker makes use of a client-server architecture. The Docker client talks with the

docker daemon which helps in building, running, and distributing the docker

containers. The Docker client runs with the daemon on the same system or we can

https://www.geeksforgeeks.org/what-is-docker-engine/
https://www.geeksforgeeks.org/what-is-docker-image/
https://www.geeksforgeeks.org/what-is-dockerfile/

connect the Docker client with the Docker daemon remotely. With the help of REST

API over a UNIX socket or a network, the docker client and daemon interact with

each other. To know more about working of docker refer to the Architecture of

Docker .

Docker Image

It is a file, comprised of multiple layers, used to execute code in a Docker container.

They are a set of instructions used to create docker containers. Docker Image is an

executable package of software that includes everything needed to run an

application.

This image informs how a container should instantiate, determining which software

components will run and how. Docker Container is a virtual environment that

bundles application code with all the dependencies required to run the application.

The application runs quickly and reliably from one computing environment to

another.

Docker Container?

Docker container is a runtime instance of an image. Allows developers to package

applications with all parts needed such as libraries and other dependencies. Docker

Containers are runtime instances of Docker images. Containers contain the whole

kit required for an application, so the application can be run in an isolated way.

For eg.- Suppose there is an image of Ubuntu OS with NGINX

SERVER when this image is run with the docker run command, then a

container will be created and NGINX SERVER will be running on

Ubuntu OS.

 Docker Hub?

Docker Hub is a repository service and it is a cloud-based service where people

push their Docker Container Images and also pull the Docker Container Images

from the Docker Hub anytime or anywhere via the internet. Generally it makes it

easy to find and reuse images. It provides features such as you can push your images

as private or public registry where you can store and share Docker images.

Mainly DevOps team uses the Docker Hub. It is an open-source tool and freely

available for all operating systems. It is like storage where we store the images and

https://www.geeksforgeeks.org/architecture-of-docker
https://www.geeksforgeeks.org/architecture-of-docker
https://www.geeksforgeeks.org/what-is-docker-hub/

pull the images when it is required. When a person wants to push/pull images from

the Docker Hub they must have a basic knowledge of Docker. Let us discuss the

requirements of the Docker tool.

Docker Commands

Through introducing the essential docker commands, docker became a powerful

software in streamlining the container management process. It helps in ensuring a

seamless development and deployment workflows. The following are the some of

docker commands that are used commonly:

 Docker Run: It used for launching the containers from images, with specifying

the runtime options and commands.

 Docker Pull: It fetches the container images from the container registry like

Docker Hub to the local machine.

 Docker ps : It helps in displaying the running containers along with their

important information like container ID, image used and status.

 Docker Stop : It helps in halting the running containers gracefully shutting down

the processes within them.

 Docker Start: It helps in restarting the stopped containers, resuming their

operations from the previous state.

 Docker Login: It helps to login in to the docker registry enabling the access to

private repositories.

To Know more about the docker commands refer tot the Docker –

Instruction Commands

Docker Engine

The software that hosts the containers is named Docker Engine. Docker Engine is a

client-server based application. The docker engine has 3 main components:

1. Server: It is responsible for creating and managing Docker images, containers,

networks, and volumes on the Docker. It is referred to as a daemon process.

2. REST API : It specifies how the applications can interact with the Server and

instructs it what to do.

https://www.geeksforgeeks.org/docker-instruction-commands
https://www.geeksforgeeks.org/docker-instruction-commands
https://www.geeksforgeeks.org/rest-api-introduction/

3. Client: The Client is a docker command-line interface (CLI), that allows us to

interact with Docker using the docker commands.

Difference Between Docker Containers and Virtual Machines

The following are the differences between docker containers and Virtual Machines:

Docker Containers Virtual Machines

Docker Containers contain binaries,

libraries, and configuration files along

with the application itself.

Virtual Machines (VMs) run on

Hypervisors, which allow multiple

Virtual Machines to run on a single

machine along with its own operating

system.

They don’t contain a guest OS for each

container and rely on the underlying OS

kernel, which makes the containers

lightweight.

Each VM has its own copy of an

operating system along with the

application and necessary binaries,

which makes it significantly larger and

it requires more resources.

Containers share resources with other

containers in the same host OS and

provide OS-level process isolation.

They provide Hardware-level process

isolation and are slow to boot.

Importance of Docker

The following are the some of the insights that discusses on the importance of

docker:

 Efficiency and Speed : It facilitates with providing the streamlined development

and deployment by packaging applications with dependencies into consistent

containers.

 Resource Optimization : It helps in sharing host system resources efficiently,

allowing for higher application density and cost savings.

 Scalability and Portability : It is easily able to scale the applications and

ensures seamless movement across different environments.

 Isolation and Security : it provides high isolation, reducing conflicts and

enhancing security.

Benefits of Docker

The following are the some of the benefits of Docker:

 Portability: Docker facilities with creation of lightweight portable containers

that can be unable on any machine regardless of the underlying operating systems.

 Isolation: Docker through containers provides a high level of isolation with

enabling the applications to run independently of each other addressing the issues

that one container doesn’t impact on other.

 Reproducibility: With, Docker developers can easily package their applications

and their dependencies into a reusable images. It allows for consistent and

repoduciable builds across the development, testing and production environments.

 DevOps Integration : It promotes the collaboration and automation across the

software development life cycle in handing the increasing workloads.

Use Cases of Docker

The following are the some of the use cases of Docker:

1. Continuous Integration and Continuous Deployment (CI/CD) : It helps in

streamlining and automating the software delivery process with ensuring faster and

more reliable releases.

Example: A team working on an online store can use Docker to automatically test

and update the website every time someone makes a change to the code.

2. Microservices Architecture: It facilitates the development, deployment, and

management of microservices with enabling independent scaling and maintenance.

Example: A food delivery app can have separate containers for logging in, placing

orders, and tracking deliveries. Each part can be updated or fixed without affecting

the rest.

3. Development Environment Consistency: Docker gives all developers the same

environment to work in, no matter what computer they use.

Example: In a team one person is using Windows and another may use Mac, but

Docker makes sure the app runs the same way for everyone, avoiding bugs like “it

works on my machine and not working in other system”.

4. Multi-Cloud and Hybrid Cloud Deployments: Docker makes it simple to run

your applications on different cloud platforms like AWS, Azure, or Google Cloud.

Example: A business using AWS today can move their app to Google Cloud

tomorrow with little effort, with the help of Docker containers.

Docker V/s Kubernetes

The following are the difference between docker and kubernetes:

Feature Docker Kubernetes

Primary

Purpose

Containerization

platform
Container orchestration platform

Functionality
Creates and manages

containers

Manages and scales containerized

applications

Setup

Complexity
Simple to set up and use

More complex setup and

configuration

Scalability
Limited to single-node

scaling

Designed for large-scale, multi-node

environments

Networking
Basic networking

capabilities

Advanced networking with service

discovery and load balancing

State

Management

Stateless; manages

individual containers

Stateful; manages container clusters

and services

Use Case
Development and testing

environments

Production environments with high

scalability and reliability

requirements

Importance of Docker

The following are the some of the insights that discusses on the importance of

docker:

 Efficiency and Speed : It facilitates with providing the streamlined development

and deployment by packaging applications with dependencies into consistent

containers.

 Resource Optimization : It helps in sharing host system resources efficiently,

allowing for higher application density and cost savings.

 Scalability and Portability : It is easily able to scale the applications and

ensures seamless movement across different environments.

 Isolation and Security : it provides high isolation, reducing conflicts and

enhancing security.

Benefits of Docker

The following are the some of the benefits of Docker:

 Portability: Docker facilities with creation of lightweight portable containers

that can be unable on any machine regardless of the underlying operating systems.

 Isolation: Docker through containers provides a high level of isolation with

enabling the applications to run independently of each other addressing the issues

that one container doesn’t impact on other.

 Reproducibility: With, Docker developers can easily package their applications

and their dependencies into a reusable images. It allows for consistent and

repoduciable builds across the development, testing and production environments.

 DevOps Integration : It promotes the collaboration and automation across the

software development life cycle in handing the increasing workloads.

Use Cases of Docker

The following are the some of the use cases of Docker:

1. Continuous Integration and Continuous Deployment (CI/CD) : It helps in

streamlining and automating the software delivery process with ensuring faster and

more reliable releases.

Example: A team working on an online store can use Docker to automatically test

and update the website every time someone makes a change to the code.

2. Microservices Architecture: It facilitates the development, deployment, and

management of microservices with enabling independent scaling and maintenance.

Example: A food delivery app can have separate containers for logging in, placing

orders, and tracking deliveries. Each part can be updated or fixed without affecting

the rest.

3. Development Environment Consistency: Docker gives all developers the same

environment to work in, no matter what computer they use.

Example: In a team one person is using Windows and another may use Mac, but

Docker makes sure the app runs the same way for everyone, avoiding bugs like “it

works on my machine and not working in other system”.

4. Multi-Cloud and Hybrid Cloud Deployments: Docker makes it simple to run

your applications on different cloud platforms like AWS, Azure, or Google Cloud.

Example: A business using AWS today can move their app to Google Cloud

tomorrow with little effort, with the help of Docker containers.

Docker V/s Kubernetes

The following are the difference between docker and kubernetes:

Feature Docker Kubernetes

Primary

Purpose

Containerization

platform
Container orchestration platform

Functionality
Creates and manages

containers

Manages and scales containerized

applications

Setup

Complexity
Simple to set up and use

More complex setup and

configuration

Scalability
Limited to single-node

scaling

Designed for large-scale, multi-node

environments

Networking Basic networking Advanced networking with service

Feature Docker Kubernetes

capabilities discovery and load balancing

State

Management

Stateless; manages

individual containers

Stateful; manages container clusters

and services

Use Case
Development and testing

environments

Production environments with high

scalability and reliability

requirements

	Docker is Popular
	Key Components of Docker
	Dockerfile
	Docker Image
	Docker Container?
	Docker Hub?
	Docker Commands
	Docker Engine
	Difference Between Docker Containers and Virtual Machines
	Importance of Docker
	Benefits of Docker
	Use Cases of Docker
	Docker V/s Kubernetes
	Importance of Docker (1)
	Benefits of Docker (1)
	Use Cases of Docker (1)
	Docker V/s Kubernetes (1)

