Subject Details
Dept     : AIDS
Sem      : 4
Regul    : 2023
Faculty : Rajitha
phone  : 9080888092
E-mail  : rajitha.m.ad@snsce.in
3
Page views
31
Files
2
Videos
2
R.Links

Icon
Syllabus

UNIT
1
INTRODUCTION TO DATA SCIENCE

Need for data science – benefits and uses – facets of data – data science process – setting the research goal – retrieving data – cleansing, integrating, and transforming data – exploratory data analysis – build the models – presenting and building applications.

UNIT
2
DESCRIPTIVE ANALYTICS

Frequency distributions – Outliers –interpreting distributions – graphs – averages - describing variability – interquartile range – variability for qualitative and ranked data - Normal distributions – z scores –correlation – scatter plots – regression – regression line – least squares regression line – standard error of estimate – interpretation of r2 – multiple regression equations – regression toward the mean.

UNIT
3
INFERENTIAL STATISTICS

Populations – samples – random sampling – Sampling distribution- standard error of the mean - Hypothesis testing – z-test – z-test procedure –decision rule – calculations – decisions – interpretations - one-tailed and two-tailed tests – Estimation – point estimate – confidence interval – level of confidence – effect of sample size

UNIT
4
ANALYSIS OF VARIANCE

t-test for one sample – sampling distribution of t – t-test procedure – t-test for two independent samples – p-value – statistical significance – t-test for two related samples. F-test – ANOVA – Two-factor experiments – three f-tests – two-factor ANOVA –Introduction to chi-square tests.

UNIT
5
PREDICTIVE ANALYTICS

Linear least squares – implementation – goodness of fit – testing a linear model – weighted resampling. Regression using StatsModels – multiple regression – nonlinear relationships – logistic regression – estimating parameters – Time series analysis – moving averages – missing values – serial correlation – autocorrelation. Introduction to survival analysis.

Reference Book:

1.Allen B. Downey, “Think Stats: Exploratory Data Analysis in Python”, Green Tea Press, 2014. 2.Sanjeev J. Wagh, Manisha S. Bhende, Anuradha D. Thakare, “Fundamentals of Data Science”, CRC Press, 2022 3.Chirag Shah, “A Hands-On Introduction to Data Science”, Cambridge University Press, 2020. 4. Vineet Raina, Srinath Krishnamurthy, “Building an Effective Data Science Practice: A Framework to Bootstrap and Manage a Successful Data Science Practice”, Apress, 2021.

Text Book:

1.David Cielen, Arno D. B. Meysman, and Mohamed Ali, “Introducing Data Science”, Manning Publications, 2016. (first two chapters for Unit I). 2.Robert S. Witte and John S. Witte, “Statistics”, Eleventh Edition, Wiley Publications, 2017. 3.Jake VanderPlas, “Python Data Science Handbook”, O’Reilly, 2016